hookeai.material_model_finder.model.material_discovery.TimeSeriesDatasetInMemory

class TimeSeriesDatasetInMemory(dataset_samples)[source]

Bases: Dataset

Time series data set (in-memory storage only).

_dataset_samples

Time series data set samples data. Each sample is stored as a dictionary where each feature (key, str) data is a torch.Tensor(2d) of shape (sequence_length, n_features).

Type:

list

__len__(self):

Return size of data set (number of samples).

__getitem__(self, index)[source]

Return data set sample from corresponding index.

get_dataset_samples(self)[source]

Get data set samples data.

add_dataset_samples(self, samples)[source]

Add samples to data set.

remove_dataset_samples(self, indices)[source]

Remove samples from data set.

from_dataset(cls, dataset)[source]

Convert data set to TimeSeriesDatasetInMemory data set.

Constructor.

Parameters:

dataset_samples (list[dict]) – Time series data set samples data. Each sample is stored as a dictionary where each feature (key, str) data is a torch.Tensor(2d) of shape (sequence_length, n_features).

List of Public Methods

add_dataset_samples

Add samples to data set.

from_dataset

Convert data set to TimeSeriesDatasetInMemory data set.

get_dataset_samples

Get data set samples data.

remove_dataset_samples

Remove samples from data set.

Methods

__init__(dataset_samples)[source]

Constructor.

Parameters:

dataset_samples (list[dict]) – Time series data set samples data. Each sample is stored as a dictionary where each feature (key, str) data is a torch.Tensor(2d) of shape (sequence_length, n_features).

add_dataset_samples(samples)[source]

Add samples to data set.

Parameters:

samples (list[dict]) – Time series samples data. Each sample is stored as a dictionary where each feature (key, str) data is a torch.Tensor(2d) of shape (sequence_length, n_features).

classmethod from_dataset(dataset)[source]

Convert data set to TimeSeriesDatasetInMemory data set.

Parameters:

dataset (torch.utils.data.Dataset) – Time series data set. Each sample is stored as a dictionary where each feature (key, str) data is a torch.Tensor(2d) of shape (sequence_length, n_features).

Returns:

dataset – Time series data set. Each sample is stored as a dictionary where each feature (key, str) data is a torch.Tensor(2d) of shape (sequence_length, n_features).

Return type:

TimeSeriesDatasetInMemory

get_dataset_samples()[source]

Get data set samples data.

Returns:

dataset_samples – Time series data set samples data. Each sample is stored as a dictionary where each feature (key, str) data is a torch.Tensor(2d) of shape (sequence_length, n_features).

Return type:

list[dict]

remove_dataset_samples(indices)[source]

Remove samples from data set.

Parameters:

indices (list[int]) – Indices of data set samples to be removed (index must be in [0, n_sample]).