hookeai.simulators.fetorch.material.models.standard.hardening.torch_interp¶
- torch_interp(x, xp, fp, left=None, right=None, is_check_data=False)[source]¶
1D linear interpolation for monotonically increasing data points.
Compatible with vectorized mapping.
Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp), evaluated at x.
This function is essentially a torch-based implementation of numpy.interp.
- Parameters:
x (torch.Tensor(1d)) – The x-coordinates at which to evaluate the interpolated values, sorted by increasing order.
xp (torch.Tensor(1d)) – The x-coordinates of the discrete data points, sorted by increasing order.
fp (torch.Tensor(1d)) – The y-coordinates of the discrete data points.
left (float, default=None) – Value to return for x < xp[0]. Defaults to fp[0].
right (float, default=None) – Value to return for x > xp[-1]. Defaults to fp[-1].
is_check_data (bool, default=False) – If True, then check data required to perform linear interpolation.
- Returns:
y – The y-coordinates of the interpolated data points.
- Return type:
torch.Tensor(1d)