hookeai.simulators.fetorch.material.models.standard.lou.Elastic¶
- class Elastic(strain_formulation, problem_type, model_parameters, device_type='cpu')[source]¶
Bases:
ConstitutiveModelLinear elastic constitutive model.
- _strain_type¶
Material constitutive model strain formulation: infinitesimal strain formulation (‘infinitesimal’), finite strain formulation (‘finite’) or finite strain formulation through kinematic extension (‘finite-kinext’).
- Type:
{‘infinitesimal’, ‘finite’, ‘finite-kinext’}
- _device_type¶
Type of device on which torch.Tensor is allocated.
- Type:
{‘cpu’, ‘cuda’}
- _device¶
Device on which torch.Tensor is allocated.
- Type:
torch.device
- state_update(self, inc_strain, state_variables_old)[source]¶
Perform material constitutive model state update.
- get_available_elastic_symmetries()[source]¶
Get available elastic symmetries under general anisotropy.
- elastic_tangent_modulus(elastic_properties, elastic_symmetry='isotropic')[source]¶
Compute 3D elasticity tensor under general anisotropic elasticity.
- get_technical_from_elastic_moduli(elastic_symmetry, elastic_properties)[source]¶
Get technical constants of elasticity from elastic moduli.
Constructor.
- Parameters:
strain_formulation ({'infinitesimal', 'finite'}) – Problem strain formulation.
problem_type (int) – Problem type: 2D plane strain (1), 2D plane stress (2), 2D axisymmetric (3) and 3D (4).
model_parameters (dict) – Material constitutive model parameters.
device_type ({'cpu', 'cuda'}, default='cpu') – Type of device on which torch.Tensor is allocated.
List of Public Methods
Compute 3D elasticity tensor under general anisotropic elasticity.
Get available elastic symmetries under general anisotropy.
Get device on which torch.Tensor is allocated.
Get material constitutive model parameters.
Get material constitutive model name.
Get required material constitutive model parameters.
Get material constitutive model strain formulation.
Get technical constants of elasticity from elastic moduli.
Set device on which torch.Tensor is allocated.
Get initialized material constitutive model state variables.
Perform material constitutive model state update.
Methods
- __init__(strain_formulation, problem_type, model_parameters, device_type='cpu')[source]¶
Constructor.
- Parameters:
strain_formulation ({'infinitesimal', 'finite'}) – Problem strain formulation.
problem_type (int) – Problem type: 2D plane strain (1), 2D plane stress (2), 2D axisymmetric (3) and 3D (4).
model_parameters (dict) – Material constitutive model parameters.
device_type ({'cpu', 'cuda'}, default='cpu') – Type of device on which torch.Tensor is allocated.
- static elastic_tangent_modulus(elastic_properties, elastic_symmetry='isotropic', device=None)[source]¶
Compute 3D elasticity tensor under general anisotropic elasticity.
- Parameters:
elastic_properties (dict) – Elastic material properties (key, str) values (item, float). Expecting independent elastic moduli (‘Eijkl’) according to elastic symmetries. Young modulus (‘E’) and Poisson’s ratio (‘v’) may alternatively be provided under elastic isotropy.
elastic_symmetry ({'isotropic', 'transverse_isotropic', 'orthotropic', 'monoclinic', 'triclinic'}, default='isotropic') –
Elastic symmetries:
’triclinic’: assumes no elastic symmetries.
’monoclinic’: assumes plane of symmetry 12.
’orthotropic’: assumes planes of symmetry 12 and 13.
’transverse_isotropic’: assumes axis of symmetry 3
’isotropic’: assumes complete symmetry.
device (torch.device, default=None) – Device on which torch.Tensor is allocated.
- Returns:
elastic_tangent_mf – 3D elasticity tensor in matricial form.
- Return type:
torch.Tensor(2d)
- static get_available_elastic_symmetries()[source]¶
Get available elastic symmetries under general anisotropy.
- Returns:
elastic_symmetries – Elastic moduli (item, tuple[str]) required for each available elastic symmetry (key, str).
- Return type:
- get_device()¶
Get device on which torch.Tensor is allocated.
- Returns:
device_type ({‘cpu’, ‘cuda’}) – Type of device on which torch.Tensor is allocated.
device (torch.device) – Device on which torch.Tensor is allocated.
- get_model_parameters()¶
Get material constitutive model parameters.
- Returns:
model_parameters – Material constitutive model parameters.
- Return type:
- get_name()¶
Get material constitutive model name.
- Returns:
name – Material constitutive model name.
- Return type:
- static get_required_model_parameters()[source]¶
Get required material constitutive model parameters.
Model parameters:
‘elastic_symmetry’ : Elastic symmetry (str, {‘isotropic’, ‘transverse_isotropic’, ‘orthotropic’, ‘monoclinic’, ‘triclinic’});
‘elastic_moduli’ : Elastic moduli (dict, {‘Eijkl’: float});
- ‘euler_angles’Euler angles (degrees) sorted according with Bunge
convention (tuple[float]).
- get_strain_type()¶
Get material constitutive model strain formulation.
- Returns:
strain_type – Material constitutive model strain formulation: infinitesimal strain formulation (‘infinitesimal’), finite strain formulation (‘finite’) or finite strain formulation through kinematic extension (‘finite-kinext’).
- Return type:
{‘infinitesimal’, ‘finite’, ‘finite-kinext’}
- get_technical_from_elastic_moduli(elastic_properties)[source]¶
Get technical constants of elasticity from elastic moduli.
- Parameters:
elastic_symmetry ({'isotropic', 'transverse_isotropic', 'orthotropic', 'monoclinic', 'triclinic'}, default='isotropic') –
Elastic symmetries:
’triclinic’: assumes no elastic symmetries.
’monoclinic’: assumes plane of symmetry 12.
’orthotropic’: assumes planes of symmetry 12 and 13.
’transverse_isotropic’: assumes axis of symmetry 3
’isotropic’: assumes complete symmetry.
elastic_properties (dict) – Elastic material properties (key, str) values (item, float). Expecting independent elastic moduli (‘Eijkl’) according to elastic symmetries.
- Returns:
technical_constants – Technical constants of elasticity according with elastic symmetries.
- Return type:
- set_device(device_type)¶
Set device on which torch.Tensor is allocated.
- Parameters:
device_type ({'cpu', 'cuda'}) – Type of device on which torch.Tensor is allocated.
device (torch.device) – Device on which torch.Tensor is allocated.
- state_init()[source]¶
Get initialized material constitutive model state variables.
Constitutive model state variables:
e_strain_mfInfinitesimal strains: Elastic infinitesimal strain tensor (matricial form).
Finite strains: Elastic spatial logarithmic strain tensor (matricial form).
Symbol: \(\boldsymbol{\varepsilon^{e}}\) / \(\boldsymbol{\varepsilon^{e}}\)
strain_mfInfinitesimal strains: Infinitesimal strain tensor (matricial form).
Finite strains: Spatial logarithmic strain tensor (matricial form).
Symbol: \(\boldsymbol{\varepsilon}\) / \(\boldsymbol{\varepsilon}\)
stress_mfInfinitesimal strains: Cauchy stress tensor (matricial form).
Finite strains: Kirchhoff stress tensor (matricial form) within
state_update(), first Piola-Kirchhoff stress tensor (matricial form) otherwise.Symbol: \(\boldsymbol{\sigma}\) / (\(\boldsymbol{\tau}\), \(\boldsymbol{P}\))
is_su_failState update failure flag.
- Returns:
state_variables_init – Initialized material constitutive model state variables.
- Return type:
- state_update(inc_strain, state_variables_old)[source]¶
Perform material constitutive model state update.
- Parameters:
inc_strain (torch.Tensor(2d)) – Incremental strain second-order tensor.
state_variables_old (dict) – Last converged constitutive model material state variables.
- Returns:
state_variables (dict) – Material constitutive model state variables.
consistent_tangent_mf (torch.Tensor(2d)) – Material constitutive model consistent tangent modulus stored in matricial form.