hookeai.simulators.fetorch.material.models.standard.von_mises_mixed.get_id_operators

get_id_operators(n_dim, device=None)[source]

Set common second- and fourth-order identity operators.

Parameters:
  • n_dim (int) – Number of dimensions.

  • device (torch.device, default=None) – Device on which torch.Tensor is allocated.

Returns:

  • soid (torch.Tensor(2d)) – Second-order identity tensor:

    \[I_{ij} = \delta_{ij}\]
  • foid (torch.Tensor(4d)) – Fourth-order identity tensor:

    \[I_{ijkl} = \delta_{ik}\delta_{jl}\]
  • fotransp (torch.Tensor(4d)) – Fourth-order transposition tensor:

    \[I_{ijkl} = \delta_{il}\delta_{jk}\]
  • fosym (torch.Tensor(4d)) – Fourth-order symmetric projection tensor:

    \[I_{ij} = 0.5(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})\]
  • fodiagtrace (torch.Tensor(4d)) – Fourth-order ‘diagonal trace’ tensor:

    \[I_{ijkl} = \delta_{ij}\delta_{kl}\]
  • fodevproj (torch.Tensor(4d)) – Fourth-order deviatoric projection tensor:

    \[I_{ijkl} = \delta_{ik}\delta_{jl} - \dfrac{1}{3} \delta_{ij}\delta_{kl}\]
  • fodevprojsym (torch.Tensor(4d)) – Fourth-order deviatoric projection tensor (second-order symmetric tensors):

    \[I_{ijkl} = 0.5(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) - \dfrac{1}{3} \delta_{ij}\delta_{kl}\]