hookeai.simulators.fetorch.structure.structure_state.HybridModel

class HybridModel(n_features_in, n_features_out, hyb_models_dict, model_directory, model_name='hybrid_model', hybridization_type='identity', is_model_in_normalized=False, is_model_out_normalized=False, is_save_model_init_file=True, device_type='cpu')[source]

Bases: Module

Hybrid model.

model_directory

Directory where model is stored. If None, then all methods that depend on an existent model directory become unavailable.

Type:

{str, None}

model_name

Name of model. If None, then all methods that depend on a valid model name become unavailable.

Type:

{str, None}

_n_features_in

Number of input features.

Type:

int

_n_features_out

Number of output features.

Type:

int

_hyb_models_dict

For each hybridized model (key, str), store dictionary (item, dict) with the hybridized model data.

Type:

dict

_hyb_models_names

Hybridized models names.

Type:

list[str]

_hyb_models

Hybridized models.

Type:

torch.nn.ModuleList

_hyb_channels

For each hybridization channel (key, str[int]), store the corresponding hybridized models module index (item, list[int]), sorted according with the associated hybridization indices. Hybridization channels are labeled between 0 and n_hyb_channel, where n_hyb_channel is the total number of channels required to place the hybridized models.

Type:

dict

_hyb_models_input_residual

For each hybridization model (key, str), store input residual connection flag (item, bool). If True, then input residual connection is assigned to hybridized model, False otherwise.

Type:

dict

_hybridization_type

Hybridization model type.

Type:

str

_hybridization_model

Hybridization model.

Type:

HybridizationModel

_device_type

Type of device on which torch.Tensor is allocated.

Type:

{‘cpu’, ‘cuda’}

_device

Device on which torch.Tensor is allocated.

Type:

torch.device

is_model_in_normalized

If True, then model expects normalized input features (normalized input data has been seen during model training).

Type:

bool

is_model_out_normalized

If True, then model expects normalized output features (normalized output data has been seen during model training).

Type:

bool

_data_scalers

Data scaler (item, TorchStandardScaler) for each feature data (key, str).

Type:

dict

init_model_from_file(model_directory=None, model_init_file_path=None)[source]

Initialize model from initialization file.

get_hybridization_channels(cls, hyb_models_dict)[source]

Get hybrid model hybridization channels.

get_hybridized_model(self, hyb_model_name)[source]

Get hybridized model from name.

get_hybridized_models(self)[source]

Get hybridized models.

get_hybridized_models_names(self)[source]

Get hybridized models names.

set_device(self, device_type)[source]

Set device on which torch.Tensor is allocated.

get_device(self)[source]

Get device on which torch.Tensor is allocated.

get_detached_model_parameters(self, is_normalized_out=False)[source]

Get model parameters detached of gradients.

get_model_parameters_bounds(self)[source]

Get model parameters bounds.

forward(self, features_in)[source]

Forward propagation.

check_model_in_normalized(cls, model)[source]

Check if generic model expects normalized input features.

check_model_out_normalized(cls, model)[source]

Check if generic model expects normalized output features.

features_out_extractor(cls, model_output)[source]

Extract output features from generic model output.

save_model_init_file(self)[source]

Save model initialization file.

sync_material_model_parameters(self)[source]

Synchronize model parameters with learnable parameters.

check_hyb_models_data_scalers(self)[source]

Check hybridized models data scalers.

Constructor.

Parameters:
  • n_features_in (int) – Number of input features.

  • n_features_out (int) – Number of output features.

  • hyb_models_dict (dict) –

    For each hybridized model (key, str), store dictionary (item, dict) with the hybridized model data, namely:

    ’hyb_model’ : Hybridized model (torch.nn.Module)

    ’hyb_indices’ : Hybridization indices (tuple[int])

    ’is_input_residual’ Input residual connection (concatenation)

  • model_directory (str) – Directory where model is stored. If None, then all methods that depend on an existent model directory become unavailable.

  • model_name (str, default='hybrid_model') – Name of model. If None, then all methods that depend on a valid model name become unavailable.

  • hybridization_type (str, default='identity') – Hybridization model type.

  • is_model_in_normalized (bool, default=False) – If True, then model expects normalized input features (normalized input data has been seen during model training).

  • is_model_out_normalized (bool, default=False) – If True, then model expects normalized output features (normalized output data has been seen during model training).

  • is_save_model_init_file (bool, default=True) – If True, saves model initialization file when model is initialized (overwritting existent initialization file), False otherwise. When initializing model from initialization file this option should be set to False to avoid updating the initialization file and preserve fitted data scalers.

  • device_type ({'cpu', 'cuda'}, default='cpu') – Type of device on which torch.Tensor is allocated.

List of Public Methods

add_module

Adds a child module to the current module.

apply

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers

Returns an iterator over module buffers.

check_hyb_models_data_scalers

Check hybridized models data scalers.

check_model_in_normalized

Check if generic model expects normalized input features.

check_model_out_normalized

Check if generic model expects normalized output features.

children

Returns an iterator over immediate children modules.

compile

Compile this Module's forward using torch.compile().

cpu

Moves all model parameters and buffers to the CPU.

cuda

Moves all model parameters and buffers to the GPU.

double

Casts all floating point parameters and buffers to double datatype.

eval

Sets the module in evaluation mode.

extra_repr

Set the extra representation of the module

features_out_extractor

Extract output features from generic model output.

float

Casts all floating point parameters and buffers to float datatype.

forward

Forward propagation.

get_buffer

Returns the buffer given by target if it exists, otherwise throws an error.

get_detached_model_parameters

Get model parameters detached of gradients.

get_device

Get device on which torch.Tensor is allocated.

get_extra_state

Returns any extra state to include in the module's state_dict.

get_hybridization_channels

Get hybrid model hybridization channels.

get_hybridized_model

Get hybridized model from name.

get_hybridized_models

Get hybridized models.

get_hybridized_models_names

Get hybridized models names.

get_model_parameters_bounds

Get model parameters bounds.

get_parameter

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule

Returns the submodule given by target if it exists, otherwise throws an error.

half

Casts all floating point parameters and buffers to half datatype.

init_model_from_file

Initialize model from initialization file.

ipu

Moves all model parameters and buffers to the IPU.

load_state_dict

Copies parameters and buffers from state_dict into this module and its descendants.

modules

Returns an iterator over all modules in the network.

named_buffers

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters

Returns an iterator over module parameters.

register_backward_hook

Registers a backward hook on the module.

register_buffer

Adds a buffer to the module.

register_forward_hook

Registers a forward hook on the module.

register_forward_pre_hook

Registers a forward pre-hook on the module.

register_full_backward_hook

Registers a backward hook on the module.

register_full_backward_pre_hook

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook

Registers a post hook to be run after module's load_state_dict is called.

register_module

Alias for add_module().

register_parameter

Adds a parameter to the module.

register_state_dict_pre_hook

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_

Change if autograd should record operations on parameters in this module.

save_model_init_file

Save model initialization file.

set_device

Set device on which torch.Tensor is allocated.

set_extra_state

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory

See torch.Tensor.share_memory_()

state_dict

Returns a dictionary containing references to the whole state of the module.

sync_material_model_parameters

Synchronize model parameters with learnable parameters.

to

Moves and/or casts the parameters and buffers.

to_empty

Moves the parameters and buffers to the specified device without copying storage.

train

Sets the module in training mode.

type

Casts all parameters and buffers to dst_type.

xpu

Moves all model parameters and buffers to the XPU.

zero_grad

Resets gradients of all model parameters.

Attributes

T_destination

call_super_init

dump_patches

training

Methods

__call__(*args, **kwargs)

Call self as a function.

__init__(n_features_in, n_features_out, hyb_models_dict, model_directory, model_name='hybrid_model', hybridization_type='identity', is_model_in_normalized=False, is_model_out_normalized=False, is_save_model_init_file=True, device_type='cpu')[source]

Constructor.

Parameters:
  • n_features_in (int) – Number of input features.

  • n_features_out (int) – Number of output features.

  • hyb_models_dict (dict) –

    For each hybridized model (key, str), store dictionary (item, dict) with the hybridized model data, namely:

    ’hyb_model’ : Hybridized model (torch.nn.Module)

    ’hyb_indices’ : Hybridization indices (tuple[int])

    ’is_input_residual’ Input residual connection (concatenation)

  • model_directory (str) – Directory where model is stored. If None, then all methods that depend on an existent model directory become unavailable.

  • model_name (str, default='hybrid_model') – Name of model. If None, then all methods that depend on a valid model name become unavailable.

  • hybridization_type (str, default='identity') – Hybridization model type.

  • is_model_in_normalized (bool, default=False) – If True, then model expects normalized input features (normalized input data has been seen during model training).

  • is_model_out_normalized (bool, default=False) – If True, then model expects normalized output features (normalized output data has been seen during model training).

  • is_save_model_init_file (bool, default=True) – If True, saves model initialization file when model is initialized (overwritting existent initialization file), False otherwise. When initializing model from initialization file this option should be set to False to avoid updating the initialization file and preserve fitted data scalers.

  • device_type ({'cpu', 'cuda'}, default='cpu') – Type of device on which torch.Tensor is allocated.

_get_backward_hooks()

Returns the backward hooks for use in the call function. It returns two lists, one with the full backward hooks and one with the non-full backward hooks.

_load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)

Copies parameters and buffers from state_dict into only this module, but not its descendants. This is called on every submodule in load_state_dict(). Metadata saved for this module in input state_dict is provided as local_metadata. For state dicts without metadata, local_metadata is empty. Subclasses can achieve class-specific backward compatible loading using the version number at local_metadata.get(“version”, None). Additionally, local_metadata can also contain the key assign_to_params_buffers that indicates whether keys should be assigned their corresponding tensor in the state_dict.

Note

state_dict is not the same object as the input state_dict to load_state_dict(). So it can be modified.

Parameters:
  • state_dict (dict) – a dict containing parameters and persistent buffers.

  • prefix (str) – the prefix for parameters and buffers used in this module

  • local_metadata (dict) – a dict containing the metadata for this module. See

  • strict (bool) – whether to strictly enforce that the keys in state_dict with prefix match the names of parameters and buffers in this module

  • missing_keys (list of str) – if strict=True, add missing keys to this list

  • unexpected_keys (list of str) – if strict=True, add unexpected keys to this list

  • error_msgs (list of str) – error messages should be added to this list, and will be reported together in load_state_dict()

_named_members(get_members_fn, prefix='', recurse=True, remove_duplicate=True)

Helper method for yielding various names + members of modules.

_register_load_state_dict_pre_hook(hook, with_module=False)

These hooks will be called with arguments: state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, before loading state_dict into self. These arguments are exactly the same as those of _load_from_state_dict.

If with_module is True, then the first argument to the hook is an instance of the module.

Parameters:
  • hook (Callable) – Callable hook that will be invoked before loading the state dict.

  • with_module (bool, optional) – Whether or not to pass the module instance to the hook as the first parameter.

_register_state_dict_hook(hook)

These hooks will be called with arguments: self, state_dict, prefix, local_metadata, after the state_dict of self is set. Note that only parameters and buffers of self or its children are guaranteed to exist in state_dict. The hooks may modify state_dict inplace or return a new one.

_save_to_state_dict(destination, prefix, keep_vars)

Saves module state to destination dictionary, containing a state of the module, but not its descendants. This is called on every submodule in state_dict().

In rare cases, subclasses can achieve class-specific behavior by overriding this method with custom logic.

Parameters:
  • destination (dict) – a dict where state will be stored

  • prefix (str) – the prefix for parameters and buffers used in this module

_version: int = 1

This allows better BC support for load_state_dict(). In state_dict(), the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See _load_from_state_dict on how to use this information in loading.

If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.

add_module(name, module)

Adds a child module to the current module.

The module can be accessed as an attribute using the given name.

Parameters:
  • name (str) – name of the child module. The child module can be accessed from this module using the given name

  • module (Module) – child module to be added to the module.

Return type:

None

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self. Typical use includes initializing the parameters of a model (see also nn-init-doc).

Parameters:

fn (Module -> None) – function to be applied to each submodule

Returns:

self

Return type:

Module

Example:

>>> @torch.no_grad()
>>> def init_weights(m):
>>>     print(m)
>>>     if type(m) == nn.Linear:
>>>         m.weight.fill_(1.0)
>>>         print(m.weight)
>>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
>>> net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
        [1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
        [1., 1.]], requires_grad=True)
Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
)
bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

Note

This method modifies the module in-place.

Returns:

self

Return type:

Module

buffers(recurse=True)

Returns an iterator over module buffers.

Parameters:

recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.

Yields:

torch.Tensor – module buffer

Return type:

Iterator[Tensor]

Example:

>>> # xdoctest: +SKIP("undefined vars")
>>> for buf in model.buffers():
>>>     print(type(buf), buf.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
check_hyb_models_data_scalers()[source]

Check hybridized models data scalers.

classmethod check_model_in_normalized(model)[source]

Check if generic model expects normalized input features.

A model expects normalized input features if it has an attribute ‘is_model_in_normalized’ set to True.

Parameters:

model (torch.nn.Module) – Model.

Returns:

is_model_in_normalized – If True, then model expects normalized input features (normalized input data has been seen during model training).

Return type:

bool

classmethod check_model_out_normalized(model)[source]

Check if generic model expects normalized output features.

A model expects normalized output features if it has an attribute ‘is_model_out_normalized’ set to True.

Parameters:

model (torch.nn.Module) – Model.

Returns:

is_model_out_normalized – If True, then model expects normalized output features (normalized output data has been seen during model training).

Return type:

bool

children()

Returns an iterator over immediate children modules.

Yields:

Module – a child module

Return type:

Iterator[Module]

compile(*args, **kwargs)

Compile this Module’s forward using torch.compile().

This Module’s __call__ method is compiled and all arguments are passed as-is to torch.compile().

See torch.compile() for details on the arguments for this function.

cpu()

Moves all model parameters and buffers to the CPU.

Note

This method modifies the module in-place.

Returns:

self

Return type:

Module

cuda(device=None)

Moves all model parameters and buffers to the GPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.

Note

This method modifies the module in-place.

Parameters:

device (int, optional) – if specified, all parameters will be copied to that device

Returns:

self

Return type:

Module

double()

Casts all floating point parameters and buffers to double datatype.

Note

This method modifies the module in-place.

Returns:

self

Return type:

Module

eval()

Sets the module in evaluation mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm, etc.

This is equivalent with self.train(False).

See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.

Returns:

self

Return type:

Module

extra_repr()

Set the extra representation of the module

To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.

Return type:

str

classmethod features_out_extractor(model_output)[source]

Extract output features from generic model output.

Parameters:

model_output ({torch.Tensor, tuple}) – Model output.

Returns:

features_out – Tensor of output features stored as torch.Tensor(2d) of shape (sequence_length, n_features_out) for unbatched input or torch.Tensor(3d) of shape (sequence_length, batch_size, n_features_out) for batched input.

Return type:

torch.Tensor

float()

Casts all floating point parameters and buffers to float datatype.

Note

This method modifies the module in-place.

Returns:

self

Return type:

Module

forward(features_in)[source]

Forward propagation.

Parameters:

features_in (torch.Tensor) – Tensor of input features stored as torch.Tensor(2d) of shape (sequence_length, n_features_in) for unbatched input or torch.Tensor(3d) of shape (sequence_length, batch_size, n_features_in) for batched input.

Returns:

features_out – Tensor of output features stored as torch.Tensor(2d) of shape (sequence_length, n_features_out) for unbatched input or torch.Tensor(3d) of shape (sequence_length, batch_size, n_features_out) for batched input.

Return type:

torch.Tensor

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

See the docstring for get_submodule for a more detailed explanation of this method’s functionality as well as how to correctly specify target.

Parameters:

target (str) – The fully-qualified string name of the buffer to look for. (See get_submodule for how to specify a fully-qualified string.)

Returns:

The buffer referenced by target

Return type:

torch.Tensor

Raises:

AttributeError – If the target string references an invalid path or resolves to something that is not a buffer

get_detached_model_parameters(is_normalized_out=False)[source]

Get model parameters detached of gradients.

Only collects parameters from hybridized models with explicit learnable parameters. Parameters labels are prefixed with hybridized model name.

Parameters:

is_normalized_out (bool, default=False) – If True, then model parameters are normalized.

Returns:

model_parameters – Model parameters.

Return type:

dict

get_device()[source]

Get device on which torch.Tensor is allocated.

Returns:

  • device_type ({‘cpu’, ‘cuda’}) – Type of device on which torch.Tensor is allocated.

  • device (torch.device) – Device on which torch.Tensor is allocated.

get_extra_state()

Returns any extra state to include in the module’s state_dict. Implement this and a corresponding set_extra_state() for your module if you need to store extra state. This function is called when building the module’s state_dict().

Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.

Returns:

Any extra state to store in the module’s state_dict

Return type:

object

classmethod get_hybridization_channels(hyb_models_dict)[source]

Get hybrid model hybridization channels.

Parameters:

hyb_models_dict (dict) – For each hybridized model (key, str), store dictionary (item, dict) with the hybridized model data.

Returns:

  • hyb_models_names (list[str]) – Hybridized models names.

  • hyb_models (list[torch.nn.Module]) – Hybridized models.

  • hyb_channels (dict) – For each hybridization channel (key, str[int]), store the corresponding hybridized models module index (item, list[int]), sorted according with the associated hybridization indices. Hybridization channels are labeled between 0 and n_hyb_channel, where n_hyb_channel is the total number of channels required to place the hybridized models.

  • hyb_models_input_residual (dict) – For each hybridization model (key, str), store input residual connection flag (item, bool). If True, then input residual connection is assigned to hybridized model, False otherwise.

get_hybridized_model(hyb_model_name)[source]

Get hybridized model from name.

Parameters:

hyb_model_name (str) – Hybridized model name.

Returns:

hyb_model – Hybridized model.

Return type:

torch.nn.Module

get_hybridized_models()[source]

Get hybridized models.

Returns:

hyb_models – Hybridized models.

Return type:

torch.nn.ModuleList

get_hybridized_models_names()[source]

Get hybridized models names.

Returns:

hyb_models_names – Hybridized models names.

Return type:

list[str]

get_model_parameters_bounds()[source]

Get model parameters bounds.

Only collects parameters from hybridized models with explicit learnable parameters. Parameters labels are prefixed with hybridized model name.

Returns:

model_parameters_bounds – Model learnable parameters bounds. For each parameter (key, str), the corresponding bounds are stored as a tuple(lower_bound, upper_bound) (item, tuple).

Return type:

dict

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

See the docstring for get_submodule for a more detailed explanation of this method’s functionality as well as how to correctly specify target.

Parameters:

target (str) – The fully-qualified string name of the Parameter to look for. (See get_submodule for how to specify a fully-qualified string.)

Returns:

The Parameter referenced by target

Return type:

torch.nn.Parameter

Raises:

AttributeError – If the target string references an invalid path or resolves to something that is not an nn.Parameter

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

For example, let’s say you have an nn.Module A that looks like this:

A(
    (net_b): Module(
        (net_c): Module(
            (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
        )
        (linear): Linear(in_features=100, out_features=200, bias=True)
    )
)

(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)

To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").

The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.

Parameters:

target (str) – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)

Returns:

The submodule referenced by target

Return type:

torch.nn.Module

Raises:

AttributeError – If the target string references an invalid path or resolves to something that is not an nn.Module

half()

Casts all floating point parameters and buffers to half datatype.

Note

This method modifies the module in-place.

Returns:

self

Return type:

Module

static init_model_from_file(model_directory=None, model_init_file_path=None)[source]

Initialize model from initialization file.

If model directory is provided, then (1) model initialization file is assumed to be stored in the model directory under the name model_init_file.pkl and (2) model initialization attributes are read from the stored model_init_file.pkl file.

In model initialization file path is provided, then (1) model initialization attributes are read from the provided model_init_file.pkl file and (2) model directory is set as the corresponding directory.

Parameters:
  • model_directory (str, default=None) – Directory where model is stored.

  • model_init_file_path (str, default=None) – Model initialization file path. Ignored if model_directory is provided.

ipu(device=None)

Moves all model parameters and buffers to the IPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.

Note

This method modifies the module in-place.

Parameters:

device (int, optional) – if specified, all parameters will be copied to that device

Returns:

self

Return type:

Module

load_state_dict(state_dict, strict=True, assign=False)

Copies parameters and buffers from state_dict into this module and its descendants. If strict is True, then the keys of state_dict must exactly match the keys returned by this module’s state_dict() function.

Warning

If assign is True the optimizer must be created after the call to load_state_dict.

Parameters:
  • state_dict (dict) – a dict containing parameters and persistent buffers.

  • strict (bool, optional) – whether to strictly enforce that the keys in state_dict match the keys returned by this module’s state_dict() function. Default: True

  • assign (bool, optional) – whether to assign items in the state dictionary to their corresponding keys in the module instead of copying them inplace into the module’s current parameters and buffers. When False, the properties of the tensors in the current module are preserved while when True, the properties of the Tensors in the state dict are preserved. Default: False

Returns:

  • missing_keys is a list of str containing the missing keys

  • unexpected_keys is a list of str containing the unexpected keys

Return type:

NamedTuple with missing_keys and unexpected_keys fields

Note

If a parameter or buffer is registered as None and its corresponding key exists in state_dict, load_state_dict() will raise a RuntimeError.

modules()

Returns an iterator over all modules in the network.

Yields:

Module – a module in the network

Return type:

Iterator[Module]

Note

Duplicate modules are returned only once. In the following example, l will be returned only once.

Example:

>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.modules()):
...     print(idx, '->', m)

0 -> Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)
named_buffers(prefix='', recurse=True, remove_duplicate=True)

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

Parameters:
  • prefix (str) – prefix to prepend to all buffer names.

  • recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True.

  • remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True.

Yields:

(str, torch.Tensor) – Tuple containing the name and buffer

Return type:

Iterator[Tuple[str, Tensor]]

Example:

>>> # xdoctest: +SKIP("undefined vars")
>>> for name, buf in self.named_buffers():
>>>     if name in ['running_var']:
>>>         print(buf.size())
named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

Yields:

(str, Module) – Tuple containing a name and child module

Example:

>>> # xdoctest: +SKIP("undefined vars")
>>> for name, module in model.named_children():
>>>     if name in ['conv4', 'conv5']:
>>>         print(module)
Return type:

Iterator[Tuple[str, Module]]

named_modules(memo=None, prefix='', remove_duplicate=True)

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

Parameters:
  • memo (Optional[Set[Module]]) – a memo to store the set of modules already added to the result

  • prefix (str) – a prefix that will be added to the name of the module

  • remove_duplicate (bool) – whether to remove the duplicated module instances in the result or not

Yields:

(str, Module) – Tuple of name and module

Note

Duplicate modules are returned only once. In the following example, l will be returned only once.

Example:

>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.named_modules()):
...     print(idx, '->', m)

0 -> ('', Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
named_parameters(prefix='', recurse=True, remove_duplicate=True)

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

Parameters:
  • prefix (str) – prefix to prepend to all parameter names.

  • recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.

  • remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True.

Yields:

(str, Parameter) – Tuple containing the name and parameter

Return type:

Iterator[Tuple[str, Parameter]]

Example:

>>> # xdoctest: +SKIP("undefined vars")
>>> for name, param in self.named_parameters():
>>>     if name in ['bias']:
>>>         print(param.size())
parameters(recurse=True)

Returns an iterator over module parameters.

This is typically passed to an optimizer.

Parameters:

recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.

Yields:

Parameter – module parameter

Return type:

Iterator[Parameter]

Example:

>>> # xdoctest: +SKIP("undefined vars")
>>> for param in model.parameters():
>>>     print(type(param), param.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
register_backward_hook(hook)

Registers a backward hook on the module.

This function is deprecated in favor of register_full_backward_hook() and the behavior of this function will change in future versions.

Returns:

a handle that can be used to remove the added hook by calling handle.remove()

Return type:

torch.utils.hooks.RemovableHandle

register_buffer(name, tensor, persistent=True)

Adds a buffer to the module.

This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s running_mean is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’s state_dict.

Buffers can be accessed as attributes using given names.

Parameters:
  • name (str) – name of the buffer. The buffer can be accessed from this module using the given name

  • tensor (Tensor or None) – buffer to be registered. If None, then operations that run on buffers, such as cuda, are ignored. If None, the buffer is not included in the module’s state_dict.

  • persistent (bool) – whether the buffer is part of this module’s state_dict.

Return type:

None

Example:

>>> # xdoctest: +SKIP("undefined vars")
>>> self.register_buffer('running_mean', torch.zeros(num_features))
register_forward_hook(hook, *, prepend=False, with_kwargs=False, always_call=False)

Registers a forward hook on the module.

The hook will be called every time after forward() has computed an output.

If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward() is called. The hook should have the following signature:

hook(module, args, output) -> None or modified output

If with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature:

hook(module, args, kwargs, output) -> None or modified output
Parameters:
  • hook (Callable) – The user defined hook to be registered.

  • prepend (bool) – If True, the provided hook will be fired before all existing forward hooks on this torch.nn.modules.Module. Otherwise, the provided hook will be fired after all existing forward hooks on this torch.nn.modules.Module. Note that global forward hooks registered with register_module_forward_hook() will fire before all hooks registered by this method. Default: False

  • with_kwargs (bool) – If True, the hook will be passed the kwargs given to the forward function. Default: False

  • always_call (bool) – If True the hook will be run regardless of whether an exception is raised while calling the Module. Default: False

Returns:

a handle that can be used to remove the added hook by calling handle.remove()

Return type:

torch.utils.hooks.RemovableHandle

register_forward_pre_hook(hook, *, prepend=False, with_kwargs=False)

Registers a forward pre-hook on the module.

The hook will be called every time before forward() is invoked.

If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:

hook(module, args) -> None or modified input

If with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:

hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
Parameters:
  • hook (Callable) – The user defined hook to be registered.

  • prepend (bool) – If true, the provided hook will be fired before all existing forward_pre hooks on this torch.nn.modules.Module. Otherwise, the provided hook will be fired after all existing forward_pre hooks on this torch.nn.modules.Module. Note that global forward_pre hooks registered with register_module_forward_pre_hook() will fire before all hooks registered by this method. Default: False

  • with_kwargs (bool) – If true, the hook will be passed the kwargs given to the forward function. Default: False

Returns:

a handle that can be used to remove the added hook by calling handle.remove()

Return type:

torch.utils.hooks.RemovableHandle

register_full_backward_hook(hook, prepend=False)

Registers a backward hook on the module.

The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:

hook(module, grad_input, grad_output) -> tuple(Tensor) or None

The grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.

For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.

Warning

Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.

Parameters:
  • hook (Callable) – The user-defined hook to be registered.

  • prepend (bool) – If true, the provided hook will be fired before all existing backward hooks on this torch.nn.modules.Module. Otherwise, the provided hook will be fired after all existing backward hooks on this torch.nn.modules.Module. Note that global backward hooks registered with register_module_full_backward_hook() will fire before all hooks registered by this method.

Returns:

a handle that can be used to remove the added hook by calling handle.remove()

Return type:

torch.utils.hooks.RemovableHandle

register_full_backward_pre_hook(hook, prepend=False)

Registers a backward pre-hook on the module.

The hook will be called every time the gradients for the module are computed. The hook should have the following signature:

hook(module, grad_output) -> tuple[Tensor] or None

The grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.

For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.

Warning

Modifying inputs inplace is not allowed when using backward hooks and will raise an error.

Parameters:
  • hook (Callable) – The user-defined hook to be registered.

  • prepend (bool) – If true, the provided hook will be fired before all existing backward_pre hooks on this torch.nn.modules.Module. Otherwise, the provided hook will be fired after all existing backward_pre hooks on this torch.nn.modules.Module. Note that global backward_pre hooks registered with register_module_full_backward_pre_hook() will fire before all hooks registered by this method.

Returns:

a handle that can be used to remove the added hook by calling handle.remove()

Return type:

torch.utils.hooks.RemovableHandle

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module’s load_state_dict is called.

It should have the following signature::

hook(module, incompatible_keys) -> None

The module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.

The given incompatible_keys can be modified inplace if needed.

Note that the checks performed when calling load_state_dict() with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.

Returns:

a handle that can be used to remove the added hook by calling handle.remove()

Return type:

torch.utils.hooks.RemovableHandle

register_module(name, module)

Alias for add_module().

Return type:

None

register_parameter(name, param)

Adds a parameter to the module.

The parameter can be accessed as an attribute using given name.

Parameters:
  • name (str) – name of the parameter. The parameter can be accessed from this module using the given name

  • param (Parameter or None) – parameter to be added to the module. If None, then operations that run on parameters, such as cuda, are ignored. If None, the parameter is not included in the module’s state_dict.

Return type:

None

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self. The registered hooks can be used to perform pre-processing before the state_dict call is made.

requires_grad_(requires_grad=True)

Change if autograd should record operations on parameters in this module.

This method sets the parameters’ requires_grad attributes in-place.

This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).

See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.

Parameters:

requires_grad (bool) – whether autograd should record operations on parameters in this module. Default: True.

Returns:

self

Return type:

Module

save_model_init_file()[source]

Save model initialization file.

Initialization file is stored in the model directory under the name model_init_file.pkl.

Initialization file contains a dictionary model_init_attributes that includes:

‘model_init_args’ - Model initialization parameters

‘model_data_scalers’ - Model fitted data scalers

set_device(device_type)[source]

Set device on which torch.Tensor is allocated.

Parameters:
  • device_type ({'cpu', 'cuda'}) – Type of device on which torch.Tensor is allocated.

  • device (torch.device) – Device on which torch.Tensor is allocated.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state() for your module if you need to store extra state within its state_dict.

Parameters:

state (dict) – Extra state from the state_dict

share_memory()

See torch.Tensor.share_memory_()

Return type:

TypeVar(T, bound= Module)

state_dict(*args, destination=None, prefix='', keep_vars=False)

Returns a dictionary containing references to the whole state of the module.

Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.

Note

The returned object is a shallow copy. It contains references to the module’s parameters and buffers.

Warning

Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.

Warning

Please avoid the use of argument destination as it is not designed for end-users.

Parameters:
  • destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an OrderedDict will be created and returned. Default: None.

  • prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default: ''.

  • keep_vars (bool, optional) – by default the Tensor s returned in the state dict are detached from autograd. If it’s set to True, detaching will not be performed. Default: False.

Returns:

a dictionary containing a whole state of the module

Return type:

dict

Example:

>>> # xdoctest: +SKIP("undefined vars")
>>> module.state_dict().keys()
['bias', 'weight']
sync_material_model_parameters()[source]

Synchronize model parameters with learnable parameters.

Required to update wrapped constitutive model parameters in hybridized models of class RecurrentConstitutiveModel.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

This can be called as

to(device=None, dtype=None, non_blocking=False)
to(dtype, non_blocking=False)
to(tensor, non_blocking=False)
to(memory_format=torch.channels_last)

Its signature is similar to torch.Tensor.to(), but only accepts floating point or complex dtypes. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.

See below for examples.

Note

This method modifies the module in-place.

Parameters:
  • device (torch.device) – the desired device of the parameters and buffers in this module

  • dtype (torch.dtype) – the desired floating point or complex dtype of the parameters and buffers in this module

  • tensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module

  • memory_format (torch.memory_format) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)

Returns:

self

Return type:

Module

Examples:

>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]], dtype=torch.float64)
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16)

>>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
>>> linear.weight
Parameter containing:
tensor([[ 0.3741+0.j,  0.2382+0.j],
        [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
>>> linear(torch.ones(3, 2, dtype=torch.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
        [0.6122+0.j, 0.1150+0.j],
        [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
to_empty(*, device, recurse=True)

Moves the parameters and buffers to the specified device without copying storage.

Parameters:
  • device (torch.device) – The desired device of the parameters and buffers in this module.

  • recurse (bool) – Whether parameters and buffers of submodules should be recursively moved to the specified device.

Returns:

self

Return type:

Module

train(mode=True)

Sets the module in training mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm, etc.

Parameters:

mode (bool) – whether to set training mode (True) or evaluation mode (False). Default: True.

Returns:

self

Return type:

Module

type(dst_type)

Casts all parameters and buffers to dst_type.

Note

This method modifies the module in-place.

Parameters:

dst_type (type or string) – the desired type

Returns:

self

Return type:

Module

xpu(device=None)

Moves all model parameters and buffers to the XPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.

Note

This method modifies the module in-place.

Parameters:

device (int, optional) – if specified, all parameters will be copied to that device

Returns:

self

Return type:

Module

zero_grad(set_to_none=True)

Resets gradients of all model parameters. See similar function under torch.optim.Optimizer for more context.

Parameters:

set_to_none (bool) – instead of setting to zero, set the grads to None. See torch.optim.Optimizer.zero_grad() for details.

Return type:

None