Source code for simulators.fetorch.material.models.standard.lou

"""Lou-Zhang-Yoon model with general differentiable yield function.

This module includes the implementation of the Lou-Zhang-Yoon model with
general differentiable yield function and isotropic hardening.

The apex singularity is handled by means of a purely volumetric return-mapping
along the hydrostatic axis.

It also includes several tools to check the yield surface convexity.

Classes
-------
LouZhangYoon
    Lou-Zhang-Yoon model with general differentiable yield function.
"""
#
#                                                                       Modules
# =============================================================================
# Standard
import math
# Third-party
import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
# Local
from simulators.fetorch.material.models.interface import ConstitutiveModel
from simulators.fetorch.material.models.standard.elastic import Elastic
from simulators.fetorch.math.matrixops import get_problem_type_parameters, \
    vget_tensor_mf, vget_tensor_from_mf, vget_state_3Dmf_from_2Dmf, \
    vget_state_2Dmf_from_3Dmf
from simulators.fetorch.math.tensorops import get_id_operators, dyad22_1, \
    ddot42_1, ddot24_1, ddot22_1, ddot44_1, fo_dinv_sym
from utilities.type_conversion import convert_dict_to_tensor, \
    convert_tensor_to_float64, convert_dict_to_float64, \
    convert_dict_to_float32
from ioput.plots import plot_xy_data, save_figure
#
#                                                          Authorship & Credits
# =============================================================================
__author__ = 'Bernardo Ferreira (bernardo_ferreira@brown.edu)'
__credits__ = ['Bernardo Ferreira', ]
__status__ = 'Stable'
# =============================================================================
#
# =============================================================================
[docs]class LouZhangYoon(ConstitutiveModel): """Lou-Zhang-Yoon model with general differentiable yield function. Attributes ---------- _name : str Constitutive model name. _strain_type : {'infinitesimal', 'finite', 'finite-kinext'} Material constitutive model strain formulation: infinitesimal strain formulation ('infinitesimal'), finite strain formulation ('finite') or finite strain formulation through kinematic extension ('finite-kinext'). _model_parameters : dict Material constitutive model parameters. _n_dim : int Problem number of spatial dimensions. _comp_order_sym : list Strain/Stress components symmetric order. _comp_order_nsym : list Strain/Stress components nonsymmetric order. _is_su_float64 : bool If True, then state update is locally computed in floating-point double precision. If False, then default floating-point precision is assumed. _device_type : {'cpu', 'cuda'} Type of device on which torch.Tensor is allocated. _device : torch.device Device on which torch.Tensor is allocated. Methods ------- get_required_model_parameters() Get required material constitutive model parameters. state_init(self) Get initialized material constitutive model state variables. state_update(self, inc_strain, state_variables_old) Perform material constitutive model state update. get_stress_invariants(self, stress) Compute invariants of stress and deviatoric stress. get_stress_invariants_and_derivatives(self, n_dim, stress) Compute stress invariants and derivatives w.r.t. stress. get_effective_stress(self, stress, yield_a, yield_b, yield_c, yield_d) Compute effective stress. get_residual_and_jacobian(self, n_dim, comp_order_sym, e_strain, \ e_trial_strain, acc_p_strain, \ acc_p_strain_old, inc_p_mult, \ e_consistent_tangent, init_yield_stress, \ hardening_law, hardening_parameters, \ a_hardening_law, a_hardening_parameters, \ b_hardening_law, b_hardening_parameters, \ c_hardening_law, c_hardening_parameters, \ d_hardening_law, d_hardening_parameters, \ is_associative_hardening=False) Compute state update residuals and Jacobian matrix. get_numerical_jacobian(self, n_dim, comp_order_sym, e_strain, \ e_trial_strain, acc_p_strain, acc_p_strain_old, \ inc_p_mult, e_consistent_tangent, \ init_yield_stress, \ hardening_law, hardening_parameters, a_hardening_law, a_hardening_parameters, b_hardening_law, b_hardening_parameters, c_hardening_law, c_hardening_parameters, d_hardening_law, d_hardening_parameters, is_associative_hardening=False, is_verbose=False) Compute state update Jacobian matrix with finite differences. compute_num_derivatives(self, n_dim, comp_order_sym, e_strain, e_consistent_tangent) Compute numerical derivatives by finite differences. convexity_return_mapping(cls, yield_c, yield_d) Perform convexity return-mapping. compute_convex_boundary(cls, n_theta=360) Compute convexity domain boundary. directional_convex_boundary(cls, theta, r_lower=0.0, r_upper=4.0, \ search_tol=1e-6) Compute convexity domain boundary along given angular direction. check_yield_surface_convexity(cls, yield_c, yield_d) Check yield surface convexity. plot_convexity_boundary(cls, convex_boundary, parameters_paths=None, \ is_plot_legend=False, save_dir=None, \ is_save_fig=False, is_stdout_display=False, \ is_latex=False) Plot convexity domain boundary. """
[docs] def __init__(self, strain_formulation, problem_type, model_parameters, is_su_float64=True, device_type='cpu'): """Constitutive model constructor. Parameters ---------- strain_formulation: {'infinitesimal', 'finite'} Problem strain formulation. problem_type : int Problem type: 2D plane strain (1), 2D plane stress (2), 2D axisymmetric (3) and 3D (4). model_parameters : dict Material constitutive model parameters. is_su_float64 : bool, default=True If True, then state update is locally computed in floating-point double precision. If False, then default floating-point precision is assumed. device_type : {'cpu', 'cuda'}, default='cpu' Type of device on which torch.Tensor is allocated. """ # Set material constitutive model name self._name = 'lou_zhang_yoon' # Set constitutive model strain formulation self._strain_type = 'infinitesimal' # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set initialization parameters self._strain_formulation = strain_formulation self._problem_type = problem_type self._model_parameters = convert_dict_to_tensor(model_parameters, is_inplace=True) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set state update floating-point precision self._is_su_float64 = is_su_float64 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set device self.set_device(device_type) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get problem type parameters self._n_dim, self._comp_order_sym, self._comp_order_nsym = \ get_problem_type_parameters(problem_type) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get elastic symmetry elastic_symmetry = model_parameters['elastic_symmetry'] # Compute technical constants of elasticity if elastic_symmetry == 'isotropic': # Compute technical constants of elasticity technical_constants = Elastic.get_technical_from_elastic_moduli( elastic_symmetry, model_parameters) # Assemble technical constants of elasticity self._model_parameters.update(technical_constants) else: raise RuntimeError('The Lou-Zhang-Yoon constitutive model is ' 'currently only available for the elastic ' 'isotropic case.')
# -------------------------------------------------------------------------
[docs] @staticmethod def get_required_model_parameters(): """Get required material constitutive model parameters. Model parameters: - 'elastic_symmetry' : Elastic symmetry (str, {'isotropic', 'transverse_isotropic', 'orthotropic', 'monoclinic', 'triclinic'}) - 'elastic_moduli' : Elastic moduli (dict, {'Eijkl': float}) - 'euler_angles' : Euler angles (degrees) sorted according with Bunge convention (tuple[float]) - 'hardening_law' : Isotropic hardening law (function) - 'hardening_parameters' : Isotropic hardening law parameters (dict) - 'a_hardening_law': Yield parameter hardening law (function) - 'a_hardening_parameters': Yield parameter hardening parameters (dict) - 'b_hardening_law': Yield parameter hardening law (function) - 'b_hardening_parameters': Yield parameter hardening parameters (dict) - 'c_hardening_law': Yield parameter hardening law (function) - 'c_hardening_parameters': Yield parameter hardening parameters (dict) - 'd_hardening_law': Yield parameter hardening law (function) - 'd_hardening_parameters': Yield parameter hardening parameters (dict) - 'is_associative_hardening': Assume associative hardening rule (bool) Notes: - Associative hardening rule is only admissible if the yield parameters a, b, c and d are constant, i.e., do not depend on the accumulated plastic strain through the corresponding hardening laws Returns ------- model_parameters_names : tuple[str] Material constitutive model parameters names (str). """ # Set material properties names model_parameters_names = ('elastic_symmetry', 'elastic_moduli', 'euler_angles', 'hardening_law', 'hardening_parameters', 'a_hardening_law', 'a_hardening_parameters', 'b_hardening_law', 'b_hardening_parameters', 'c_hardening_law', 'c_hardening_parameters', 'd_hardening_law', 'd_hardening_parameters', 'is_associative_hardening') # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return model_parameters_names
# -------------------------------------------------------------------------
[docs] def state_init(self): """Get initialized material constitutive model state variables. Constitutive model state variables: * ``e_strain_mf`` * *Infinitesimal strains*: Elastic infinitesimal strain tensor (matricial form). * *Symbol*: :math:`\\boldsymbol{\\varepsilon^{e}}` * ``acc_p_strain`` * Accumulated plastic strain. * *Symbol*: :math:`\\bar{\\varepsilon}^{p}` * ``strain_mf`` * *Infinitesimal strains*: Infinitesimal strain tensor (matricial form). * *Symbol*: :math:`\\boldsymbol{\\varepsilon}` * ``stress_mf`` * *Infinitesimal strains*: Cauchy stress tensor (matricial form). * *Symbol*: :math:`\\boldsymbol{\\sigma}` * ``is_plastic`` * Plastic step flag. * ``is_su_fail`` * State update failure flag. ---- Returns ------- state_variables_init : dict Initialized material constitutive model state variables. """ # Initialize constitutive model state variables state_variables_init = dict() # Initialize strain tensors state_variables_init['e_strain_mf'] = vget_tensor_mf( torch.zeros((self._n_dim, self._n_dim), device=self._device), self._n_dim, self._comp_order_sym) state_variables_init['strain_mf'] = \ state_variables_init['e_strain_mf'].clone() # Initialize Cauchy stress tensor state_variables_init['stress_mf'] = vget_tensor_mf( torch.zeros((self._n_dim, self._n_dim), device=self._device), self._n_dim, self._comp_order_sym) # Initialize internal variables state_variables_init['acc_p_strain'] = \ torch.tensor(0.0, device=self._device) # Initialize state flags state_variables_init['is_plast'] = \ torch.tensor(False, device=self._device) state_variables_init['is_su_fail'] = \ torch.tensor(False, device=self._device) # Set additional out-of-plane strain and stress components if self._problem_type == 1: state_variables_init['e_strain_33'] = \ torch.tensor(0.0, device=self._device) state_variables_init['stress_33'] = \ torch.tensor(0.0, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return state_variables_init
# -------------------------------------------------------------------------
[docs] def state_update(self, inc_strain, state_variables_old): """Perform material constitutive model state update. Parameters ---------- inc_strain : torch.Tensor(2d) Incremental strain second-order tensor. state_variables_old : dict Last converged constitutive model material state variables. Returns ------- state_variables : dict Material constitutive model state variables. consistent_tangent_mf : torch.Tensor(2d) Material constitutive model consistent tangent modulus stored in matricial form. """ # Set verbose flag is_verbose = False # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get model parameters model_parameters = self._model_parameters # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize floating-point precision conversion flag is_precision_conversion = False # Handle state update floating-point precision if torch.get_default_dtype() == torch.float32 and self._is_su_float64: # Set floating-point precision conversion flag is_precision_conversion = True # Set default floating-point precision torch.set_default_dtype(torch.float64) # Perform floating-point precision conversion model_parameters = convert_dict_to_float64(model_parameters, is_inplace=False) inc_strain = convert_tensor_to_float64(inc_strain) state_variables_old = convert_dict_to_float64(state_variables_old, is_inplace=False) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set state update convergence tolerance su_conv_tol = 1e-6 # Set state update maximum number of iterations su_max_n_iterations = 20 # Set apex return-mapping switch tolerance apex_switch_tol = 0.05 # Set minimum threshold to handle values close or equal to zero small = 1e-8 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build incremental strain tensor matricial form inc_strain_mf = vget_tensor_mf(inc_strain, self._n_dim, self._comp_order_sym, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get material properties E = model_parameters['E'] v = model_parameters['v'] # Get material isotropic strain hardening law hardening_law = model_parameters['hardening_law'] hardening_parameters = model_parameters['hardening_parameters'] # Get yield parameters hardening laws a_hardening_law = model_parameters['a_hardening_law'] a_hardening_parameters = model_parameters['a_hardening_parameters'] b_hardening_law = model_parameters['b_hardening_law'] b_hardening_parameters = model_parameters['b_hardening_parameters'] c_hardening_law = model_parameters['c_hardening_law'] c_hardening_parameters = model_parameters['c_hardening_parameters'] d_hardening_law = model_parameters['d_hardening_law'] d_hardening_parameters = model_parameters['d_hardening_parameters'] # Get hardening rule associativity is_associative_hardening = model_parameters['is_associative_hardening'] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute bulk and shear modulus K = E/(3.0*(1.0 - 2.0*v)) # Compute Lamé parameters lam = (E*v)/((1.0 + v)*(1.0 - 2.0*v)) miu = E/(2.0*(1.0 + v)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get last increment converged state variables e_strain_old_mf = state_variables_old['e_strain_mf'] p_strain_old_mf = state_variables_old['strain_mf'] - e_strain_old_mf acc_p_strain_old = state_variables_old['acc_p_strain'] if self._problem_type == 1: e_strain_33_old = state_variables_old['e_strain_33'] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize state update failure flag is_su_fail = torch.tensor(False, device=self._device) # Initialize plastic step flag is_plast = torch.tensor(False, device=self._device) # # 2D > 3D conversion # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # When the problem type corresponds to a 2D analysis, perform the state # update and consistent tangent computation as in the 3D case, # considering the appropriate out-of-plain strain and stress components if self._problem_type == 4: n_dim = self._n_dim comp_order_sym = self._comp_order_sym else: # Set 3D problem parameters n_dim, comp_order_sym, _ = get_problem_type_parameters(4) # Build strain tensors (matricial form) by including the # appropriate out-of-plain components inc_strain_mf = vget_state_3Dmf_from_2Dmf( inc_strain_mf, comp_33=0.0, device=self._device) e_strain_old_mf = vget_state_3Dmf_from_2Dmf( e_strain_old_mf, e_strain_33_old, device=self._device) # # State update # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set required fourth-order tensors soid, _, _, fosym, fodiagtrace, _, _ = \ get_id_operators(n_dim, device=self._device) soid_mf = vget_tensor_mf(soid, n_dim, comp_order_sym, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute elastic trial strain e_trial_strain_mf = e_strain_old_mf + inc_strain_mf # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute elastic consistent tangent modulus according to problem type # and store it in matricial form if self._problem_type in [1, 4]: e_consistent_tangent = lam*fodiagtrace + 2.0*miu*fosym e_consistent_tangent_mf = vget_tensor_mf(e_consistent_tangent, n_dim, comp_order_sym, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute trial stress trial_stress_mf = torch.matmul(e_consistent_tangent_mf, e_trial_strain_mf) trial_stress = vget_tensor_from_mf(trial_stress_mf, n_dim, comp_order_sym, device=self._device) # Compute trial accumulated plastic strain acc_p_trial_strain = acc_p_strain_old # Compute trial yield stress yield_stress, _ = hardening_law(hardening_parameters, acc_p_trial_strain) # Compute current yield parameters yield_a, _ = a_hardening_law(a_hardening_parameters, acc_p_trial_strain) yield_b, _ = b_hardening_law(b_hardening_parameters, acc_p_trial_strain) yield_c, _ = c_hardening_law(c_hardening_parameters, acc_p_trial_strain) yield_d, _ = d_hardening_law(d_hardening_parameters, acc_p_trial_strain) # Compute trial effective stress effective_trial_stress = self.get_effective_stress( trial_stress, yield_a, yield_b, yield_c, yield_d) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Check yield function yield_function = effective_trial_stress - yield_stress # If the trial stress state lies inside the yield function, # then the state update is purely elastic and coincident with the # elastic trial state. Otherwise, the state update is elastoplastic # and the return-mapping system of nonlinear equations must be solved # in order to update the state variables if yield_function/yield_stress <= su_conv_tol: # Update elastic strain e_strain_mf = e_trial_strain_mf # Update stress stress_mf = trial_stress_mf # Update accumulated plastic strain acc_p_strain = acc_p_strain_old else: # Set plastic step flag is_plast = torch.tensor(True, device=self._device) # Get elastic trial strain tensor e_trial_strain = vget_tensor_from_mf(e_trial_strain_mf, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute initial yield parameters yield_a_init, _ = a_hardening_law( a_hardening_parameters, acc_p_strain=torch.tensor(0.0, device=self._device)) yield_b_init, _ = b_hardening_law( b_hardening_parameters, acc_p_strain=torch.tensor(0.0, device=self._device)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute trial pressure trial_pressure = (1.0/3.0)*torch.trace(trial_stress) # Compute current apex pressure safe_yield_b = torch.max( torch.abs(yield_b), torch.tensor(1e-6, device=self._device)) pressure_apex = (1.0/(3.0*yield_a*safe_yield_b))*yield_stress # Set return-mapping type is_apex_return = \ trial_pressure > (1.0 - apex_switch_tol)*pressure_apex # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute return-mapping to surface or apex if is_apex_return: # Get Drucker-Prager pressure and cohesion equivalent # parameters etay = 3.0*yield_a_init*yield_b_init xi = (2.0*math.sqrt(3)/3.0)*torch.sqrt(1.0 - (1.0/3.0)*etay**2) # Compute yield parameter equivalent to Drucker-Prager ratio # between yield surface cohesion parameter and yield surface # pressure parameter alpha = xi/etay # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set incremental plastic volumetric strain initial iterative # guess inc_vol_p_strain = torch.tensor(0.0, device=self._device) # Compute initial (iterative) yield stress and hardening # modulus yield_stress, hard_slope = hardening_law( hardening_parameters, acc_p_strain_old + alpha*inc_vol_p_strain) # Compute initial (iterative) yield parameters yield_a, _ = a_hardening_law( a_hardening_parameters, acc_p_strain_old + alpha*inc_vol_p_strain) yield_b, _ = b_hardening_law( b_hardening_parameters, acc_p_strain_old + alpha*inc_vol_p_strain) # Compute initial (iterative) material parameter beta = 1.0/(3.0*yield_a*yield_b) # Initialize Newton-Raphson iteration counter nr_iter = 0 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize convergence norm of iterative solution vector conv_diter_norm = torch.tensor(0.0, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if is_verbose: print(f'\n\nPlastic Increment - Newton-Raphson') print('----------------------------------') print('nr_iter conv_norm_res conv_diter_norm') # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Start Newton-Raphson iterative loop while True: # Compute current yield stress and hardening modulus yield_stress, hard_slope = hardening_law( hardening_parameters, acc_p_strain_old + alpha*inc_vol_p_strain) # Compute current yield parameters yield_a, _ = a_hardening_law( a_hardening_parameters, acc_p_strain_old + alpha*inc_vol_p_strain) yield_b, _ = b_hardening_law( b_hardening_parameters, acc_p_strain_old + alpha*inc_vol_p_strain) # Compute current material parameter beta = 1.0/(3.0*yield_a*yield_b) # Compute return-mapping residual (apex) residual = yield_stress*beta \ - (trial_pressure - K*inc_vol_p_strain) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute residual convergence norm if torch.abs(yield_stress) < small: conv_norm_res = torch.abs(residual) else: conv_norm_res = \ torch.abs(residual)/torch.abs(yield_stress) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Display iterative residuals if is_verbose: print(f'{nr_iter:7d} {conv_norm_res:^15.4e} ' f'{conv_diter_norm:^12.4e}') # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Check Newton-Raphson iterative procedure convergence is_converged = (conv_norm_res < su_conv_tol and conv_diter_norm < su_conv_tol and nr_iter > 0) # Control Newton-Raphson iteration loop flow if is_converged: # Display convergence status if is_verbose: print(f'{"Solution converged!":^74s}') # Leave Newton-Raphson iterative loop (converged # solution) break elif nr_iter == su_max_n_iterations: # Display convergence status if is_verbose: print(f'{"Solution convergence failure!":^74s}') # Update state update failure flag is_su_fail = torch.tensor(True, device=self._device) # Leave Newton-Raphson iterative loop (failed solution) break else: # Increment iteration counter nr_iter = nr_iter + 1 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute return-mapping Jacobian (scalar) jacobian = alpha*beta*hard_slope + K # Solve return-mapping linearized equation d_iter = -residual/jacobian # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute convergence norm of iterative solution vector conv_diter = d_iter.detach().clone() if torch.abs(acc_p_strain_old) > small: conv_diter = conv_diter/acc_p_strain_old conv_diter_norm = torch.linalg.norm(conv_diter) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update incremental plastic volumetric strain inc_vol_p_strain = inc_vol_p_strain + d_iter # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute pressure pressure = trial_pressure - K*inc_vol_p_strain # Update stress stress_mf = pressure*soid_mf # Update elastic strain e_strain = (1.0/(3.0*K))*pressure*soid # Update accumulated plastic strain acc_p_strain = acc_p_strain_old + alpha*inc_vol_p_strain else: # Compute initial yield stress init_yield_stress, _ = hardening_law( hardening_parameters, acc_p_strain=torch.tensor(0.0, device=self._device)) # Set unknowns initial iterative guess e_strain = e_trial_strain acc_p_strain = acc_p_strain_old inc_p_mult = torch.tensor(0.0, device=self._device) # Initialize Newton-Raphson iteration counter nr_iter = 0 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize convergence norm of iterative solution vector conv_diter_norm = torch.tensor(0.0, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if is_verbose: print(f'\n\nPlastic Increment - Newton-Raphson') print('----------------------------------') print('nr_iter conv_norm_res_1 conv_norm_res_2 ' 'conv_norm_res_3 conv_diter_norm') # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Start Newton-Raphson iterative loop while True: # Compute return-mapping residuals and Jacobian residual_1, residual_2, residual_3, jacobian = \ self.get_residual_and_jacobian( n_dim, comp_order_sym, e_strain, e_trial_strain, acc_p_strain, acc_p_strain_old, inc_p_mult, e_consistent_tangent, init_yield_stress, hardening_law, hardening_parameters, a_hardening_law, a_hardening_parameters, b_hardening_law, b_hardening_parameters, c_hardening_law, c_hardening_parameters, d_hardening_law, d_hardening_parameters, is_associative_hardening=is_associative_hardening) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build residuals matrices r1 = vget_tensor_mf(residual_1, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) r2 = residual_2.reshape(-1) r3 = residual_3.reshape(-1) # Build residual vector residual = torch.cat((r1, r2, r3), dim=0) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute residuals convergence norm if torch.linalg.norm(e_trial_strain) < small: conv_norm_res_1 = torch.linalg.norm(residual_1) else: conv_norm_res_1 = (torch.linalg.norm(residual_1)/ torch.linalg.norm(e_trial_strain)) if torch.abs(acc_p_strain_old) < small: conv_norm_res_2 = torch.abs(residual_2) else: conv_norm_res_2 = \ torch.abs(residual_2/acc_p_strain_old) conv_norm_res_3 = torch.abs(residual_3) # Compute residual vector convergence norm conv_norm_residual = torch.mean( torch.tensor((conv_norm_res_1, conv_norm_res_2, conv_norm_res_3))) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Display iterative residuals if is_verbose: print(f'{nr_iter:7d} {conv_norm_res_1:^15.4e} ' f'{conv_norm_res_2:^15.4e} ' f'{conv_norm_res_3:^15.4e} ' f'{conv_diter_norm:^15.4e}') # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Check Newton-Raphson iterative procedure convergence is_converged = (conv_norm_residual < su_conv_tol and conv_diter_norm < su_conv_tol and nr_iter > 0) # Control Newton-Raphson iteration loop flow if is_converged: # Display convergence status if is_verbose: print(f'{"Solution converged!":^74s}') # Leave Newton-Raphson iterative loop (converged # solution) break elif nr_iter == su_max_n_iterations: # Display convergence status if is_verbose: print(f'{"Solution convergence failure!":^74s}') # Update state update failure flag is_su_fail = torch.tensor(True, device=self._device) # Leave Newton-Raphson iterative loop (failed solution) break else: # Increment iteration counter nr_iter = nr_iter + 1 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Solve return-mapping linearized equation d_iter = torch.linalg.solve(jacobian, -residual) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute convergence norm of iterative solution vector conv_diter = d_iter.detach().clone() if torch.linalg.norm(e_trial_strain) > small: conv_diter[:len(comp_order_sym)] = \ conv_diter[:len(comp_order_sym)] \ /torch.linalg.norm(e_trial_strain) if torch.abs(acc_p_strain_old) > small: conv_diter[len(comp_order_sym)] = \ conv_diter[len(comp_order_sym)]/acc_p_strain_old conv_diter[len(comp_order_sym)+1] = \ conv_diter[len(comp_order_sym)+1]/acc_p_strain_old conv_diter_norm = torch.linalg.norm(conv_diter) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Extract iterative solution e_strain_iter = vget_tensor_from_mf( d_iter[:len(comp_order_sym)], n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) acc_p_strain_iter = d_iter[len(comp_order_sym)] inc_p_mult_iter = d_iter[len(comp_order_sym) + 1] # Update iterative unknowns e_strain = e_strain + e_strain_iter acc_p_strain = acc_p_strain + acc_p_strain_iter inc_p_mult = inc_p_mult + inc_p_mult_iter # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update elastic strain e_strain_mf = vget_tensor_mf(e_strain, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) # Update stress stress_mf = torch.matmul(e_consistent_tangent_mf, e_strain_mf) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set state variables to NaN if state update fails if is_su_fail: # Set elastic strain to NaN if state update fails e_strain_mf = torch.full(e_strain_mf.shape, torch.nan, device=self._device) # Set stress to NaN if state update fails stress_mf = torch.full(stress_mf.shape, torch.nan, device=self._device) # Set accumulated plastic strain to NaN if state update fails acc_p_strain = torch.tensor(torch.nan, device=self._device) # Set incremental plastic multiplier to NaN if state update # fails inc_p_mult = torch.tensor(torch.nan, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get the out-of-plane strain and stress components if self._problem_type == 1: e_strain_33 = e_strain_mf[comp_order_sym.index('33')] stress_33 = stress_mf[comp_order_sym.index('33')] # # 3D > 2D Conversion # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # When the problem type corresponds to a 2D analysis, build the 2D # strain and stress tensors (matricial form) once the state update has # been performed if self._problem_type == 1: # Builds 2D strain and stress tensors (matricial form) from the # associated 3D counterparts e_trial_strain_mf = vget_state_2Dmf_from_3Dmf( e_trial_strain_mf, device=self._device) e_strain_mf = vget_state_2Dmf_from_3Dmf( e_strain_mf, device=self._device) stress_mf = vget_state_2Dmf_from_3Dmf( stress_mf, device=self._device) # # Update state variables # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize state variables dictionary state_variables = self.state_init() # Store updated state variables state_variables['e_strain_mf'] = e_strain_mf state_variables['acc_p_strain'] = acc_p_strain state_variables['strain_mf'] = e_trial_strain_mf + p_strain_old_mf state_variables['stress_mf'] = stress_mf state_variables['is_su_fail'] = is_su_fail state_variables['is_plast'] = is_plast if self._problem_type == 1: state_variables['e_strain_33'] = e_strain_33 state_variables['stress_33'] = stress_33 # # Consistent tangent modulus # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # If the state update was purely elastic, then the consistent tangent # modulus is the elastic consistent tangent modulus. Otherwise, compute # the elastoplastic consistent tangent modulus consistent_tangent_mf = None # # 3D > 2D Conversion # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # When the problem type corresponds to a 2D analysis, build the 2D # consistent tangent modulus (matricial form) from the 3D counterpart if self._problem_type == 1 and consistent_tangent_mf is not None: consistent_tangent_mf = vget_state_2Dmf_from_3Dmf( consistent_tangent_mf, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Restore floating-point precision if is_precision_conversion: # Reset default floating-point precision torch.set_default_dtype(torch.float32) # Perform floating-point precision conversion state_variables = convert_dict_to_float32(state_variables, is_inplace=True) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return state_variables, consistent_tangent_mf
# -------------------------------------------------------------------------
[docs] def get_stress_invariants(self, stress): """Compute invariants of stress and deviatoric stress. Parameters ---------- stress : torch.Tensor(2d) Stress. Returns ------- i1 : torch.Tensor(0d) First (principal) invariant of stress tensor. i2 : torch.Tensor(0d) Second (principal) invariant of stress tensor. i3 : torch.Tensor(0d) Third (principal) invariant of stress tensor. j1 : torch.Tensor(0d) First invariant of deviatoric stress tensor. j2 : torch.Tensor(0d) Second invariant of deviatoric stress tensor. j3 : torch.Tensor(0d) Third invariant of deviatoric stress tensor. """ # Compute first (principal) invariant of stress tensor. i1 = torch.trace(stress) # Compute second (principal) invariant of stress tensor. i2 = 0.5*(torch.trace(stress)**2 - torch.trace(torch.matmul(stress, stress))) # Compute third (principal) invariant of stress tensor. i3 = torch.det(stress) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute first invariant of deviatoric stress tensor j1 = i1 # Compute second invariant of deviatoric stress tensor j2 = (1/3)*(i1**2) - i2 # Compute third invariant of deviatoric stress tensor j3 = (2/27)*(i1**3) - (1/3)*i1*i2 + i3 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return i1, i2, i3, j1, j2, j3
# -------------------------------------------------------------------------
[docs] def get_stress_invariants_and_derivatives(self, n_dim, stress): """Compute stress invariants and derivatives w.r.t. stress. Parameters ---------- n_dim : int Problem number of spatial dimensions. stress : torch.Tensor(2d) Stress. Returns ------- i1 : torch.Tensor(0d) First (principal) invariant of stress tensor. i2 : torch.Tensor(0d) Second (principal) invariant of stress tensor. i3 : torch.Tensor(0d) Third (principal) invariant of stress tensor. j1 : torch.Tensor(0d) First invariant of deviatoric stress tensor. j2 : torch.Tensor(0d) Second invariant of deviatoric stress tensor. j3 : torch.Tensor(0d) Third invariant of deviatoric stress tensor. di1_dstress : torch.Tensor(1d) First-order derivative of first invariant of stress tensor w.r.t. stress. dj2_dstress : torch.Tensor(1d) First-order derivative of second invariant of deviatoric stress tensor w.r.t. stress. dj3_dstress : torch.Tensor(1d) First-order derivative of third invariant of deviatoric stress tensor w.r.t. stress. d2j2_dstress2 : torch.Tensor(1d) Second-order derivative of second invariant of deviatoric stress tensor w.r.t. stress. d2j3_dstress2 : torch.Tensor(1d) Second-order derivative of third invariant of deviatoric stress tensor w.r.t. stress. """ # Set required fourth-order tensors soid, _, _, _, _, _, fodevprojsym = \ get_id_operators(n_dim, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute deviatoric stress tensor dev_stress = ddot42_1(fodevprojsym, stress) # Compute determinant of deviatoric stress tensor dev_stress_det = torch.det(dev_stress) # Compute inverse of deviatoric stress tensor dev_stress_inv = torch.inverse(dev_stress) # Compute derivative of inverse of deviatoric strss tensor w.r.t itself ddsinv_ddsinv = fo_dinv_sym(dev_stress_inv) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute auxiliary term w6 = ddot24_1(dev_stress_inv, fodevprojsym) # Compute auxiliary term derivative dw6_dstress = ddot44_1(ddot44_1(fodevprojsym, ddsinv_ddsinv), fodevprojsym) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute stress invariants i1, i2, i3, j1, j2, j3 = self.get_stress_invariants(stress) # Compute derivatives w.r.t. stress di1_dstress = soid dj2_dstress = dev_stress dj3_dstress = dev_stress_det*w6 # Compute second-order derivatives w.r.t. stress d2j2_dstress2 = fodevprojsym d2j3_dstress2 = dyad22_1(w6, dj3_dstress) + dev_stress_det*dw6_dstress # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return i1, i2, i3, j1, j2, j3, di1_dstress, dj2_dstress, dj3_dstress, \ d2j2_dstress2, d2j3_dstress2
# -------------------------------------------------------------------------
[docs] def get_effective_stress(self, stress, yield_a, yield_b, yield_c, yield_d): """Compute effective stress. Parameters ---------- stress : torch.Tensor(2d) Stress. yield_a : torch.Tensor(0d) Yield parameter. yield_b : torch.Tensor(0d) Yield parameter. yield_c : torch.Tensor(0d) Yield parameter. yield_d : torch.Tensor(0d) Yield parameter. Returns ------- effective_stress : torch.Tensor(0d) Effective stress. """ # Compute stress invariants i1, _, _, _, j2, j3 = self.get_stress_invariants(stress) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute auxiliary terms w1 = yield_b*i1 w2 = yield_c*(j3**2) w3 = yield_d*j3 w4 = j2**3 - w2 w5 = w4**(1/2) - w3 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute effective stress effective_stress = yield_a*(w1 + (w5**(1/3))) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return effective_stress
# -------------------------------------------------------------------------
[docs] def get_residual_and_jacobian(self, n_dim, comp_order_sym, e_strain, e_trial_strain, acc_p_strain, acc_p_strain_old, inc_p_mult, e_consistent_tangent, init_yield_stress, hardening_law, hardening_parameters, a_hardening_law, a_hardening_parameters, b_hardening_law, b_hardening_parameters, c_hardening_law, c_hardening_parameters, d_hardening_law, d_hardening_parameters, is_associative_hardening=False): """Compute state update residuals and Jacobian matrix. Parameters ---------- n_dim : int Problem number of spatial dimensions. comp_order_sym : list Strain/Stress components symmetric order. e_strain : torch.Tensor(2d) Elastic strain. e_trial_strain : torch.Tensor(2d) Elastic trial strain. acc_p_strain : torch.Tensor(0d) Accumulated plastic strain. acc_p_strain_old : torch.Tensor(0d) Last converged accumulated plastic strain. inc_p_mult : torch.Tensor(0d) Incremental plastic multiplier. e_consistent_tangent : torch.Tensor(4d) Elastic consistent tangent modulus. init_yield_stress : torch.Tensor(0d) Initial yield stress. hardening_law : function Hardening law. hardening_parameters : dict Hardening law parameters. a_hardening_law : function Yield parameter hardening law. a_hardening_parameters : function Yield parameter hardening law parameters. b_hardening_law : function Yield parameter hardening law. b_hardening_parameters : function Yield parameter hardening law parameters. c_hardening_law : function Yield parameter hardening law. c_hardening_parameters : function Yield parameter hardening law parameters. d_hardening_law : function Yield parameter hardening law. d_hardening_parameters : function Yield parameter hardening law parameters. is_associative_hardening : bool, default=False If True, then adopt associative hardening rule. Returns ------- residual_1 : torch.Tensor(2d) First residual. residual_2 : torch.Tensor(2d) Second residual. residual_3 : torch.Tensor(2d) Third residual. jacobian : torch.Tensor(2d) Jacobian matrix. """ # Set associative hardening factor associative_hardening_factor = torch.tensor(1.0, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set required fourth-order tensors soid, _, _, fosym, _, _, _ = \ get_id_operators(n_dim, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute stress stress = ddot42_1(e_consistent_tangent, e_strain) # Compute current yield stress and hardening modulus yield_stress, hard_slope = \ hardening_law(hardening_parameters, acc_p_strain) # Compute current yield parameters and hardening moduli yield_a, a_hard_slope = \ a_hardening_law(a_hardening_parameters, acc_p_strain) yield_b, b_hard_slope = \ b_hardening_law(b_hardening_parameters, acc_p_strain) yield_c, c_hard_slope = \ c_hardening_law(c_hardening_parameters, acc_p_strain) yield_d, d_hard_slope = \ d_hardening_law(d_hardening_parameters, acc_p_strain) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute stress invariants and derivatives w.r.t. stress i1, _, _, _, j2, j3, di1_dstress, dj2_dstress, dj3_dstress, \ d2j2_dstress2, d2j3_dstress2 = \ self.get_stress_invariants_and_derivatives(n_dim, stress) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute auxiliary terms w1 = yield_b*i1 w2 = yield_c*(j3**2) w3 = yield_d*j3 w4 = j2**3 - w2 w5 = w4**(1/2) - w3 # Compute auxiliary terms derivatives w.r.t. stress dw1_dstress = yield_b*di1_dstress dw2_dstress = 2*yield_c*j3*dj3_dstress dw3_dstress = yield_d*dj3_dstress dw4_dstress = 3*(j2**2)*dj2_dstress - dw2_dstress dw5_dstress = (1/2)*(w4**(-1/2))*dw4_dstress - dw3_dstress # Compute auxiliary terms second-order derivatives w.r.t. stress d2w2_dstress2 = 2*yield_c*(dyad22_1(dj3_dstress, dj3_dstress) + j3*d2j3_dstress2) d2w3_dstress2 = yield_d*d2j3_dstress2 d2w4_dstress2 = (6*j2*dyad22_1(dj2_dstress, dj2_dstress) + 3*(j2**2)*d2j2_dstress2 - d2w2_dstress2) d2w5_dstress2 = (-(1/4)*(w4**(-3/2))*dyad22_1(dw4_dstress, dw4_dstress) + (1/2)*(w4**(-1/2))*d2w4_dstress2 - d2w3_dstress2) # Compute auxiliary terms derivatives w.r.t. accumulated plastic strain dw1_daccpstr = i1*b_hard_slope dw2_daccpstr = (j3**2)*c_hard_slope dw3_daccpstr = j3*d_hard_slope dw4_daccpstr = -dw2_daccpstr dw5_daccpstr = (1/2)*(w4**(-1/2))*dw4_daccpstr - dw3_daccpstr # Compute auxiliary terms cross derivatives w.r.t. stress and # accumulated plastic strain d2w1_daccpstrdstress = b_hard_slope*soid d2w2_daccpstrdstress = 2*j3*c_hard_slope*dj3_dstress d2w3_daccpstrdstress = d_hard_slope*dj3_dstress d2w4_daccpstrdstress = -d2w2_daccpstrdstress d2w5_daccpstrdstress = (-(1/4)*(w4**(-3/2))*dw4_daccpstr*dw4_dstress + (1/2)*(w4**(-1/2))*d2w4_daccpstrdstress - d2w3_daccpstrdstress) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute effective stress effective_stress = yield_a*(w1 + (w5**(1/3))) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute flow vector flow_vector = yield_a*(dw1_dstress + (1/3)*(w5**(-2/3))*dw5_dstress) # Compute flow vector norm norm_flow_vector = torch.linalg.norm(flow_vector) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute first residual residual_1 = e_strain - e_trial_strain + inc_p_mult*flow_vector # Compute second residual if is_associative_hardening: residual_2 = (acc_p_strain - acc_p_strain_old - associative_hardening_factor*inc_p_mult) else: residual_2 = (acc_p_strain - acc_p_strain_old - inc_p_mult*(math.sqrt(2/3))*norm_flow_vector) # Compute third residual residual_3 = (effective_stress - yield_stress)/init_yield_stress # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute derivative of flow vector w.r.t. stress dflow_dstress = (1/3)*yield_a*( -(2/3)*(w5**(-5/3))*dyad22_1(dw5_dstress, dw5_dstress) + (w5**(-2/3))*d2w5_dstress2) # Compute derivative of flow vector w.r.t. elastic strain dflow_destrain = ddot44_1(dflow_dstress, e_consistent_tangent) # Compute derivative of flow vector w.r.t. accumulated plastic strain dflow_daccpstr = ( a_hard_slope*(dw1_dstress + (1/3)*(w5**(-2/3))*dw5_dstress) + yield_a*(d2w1_daccpstrdstress - (2/9)*(w5**(-5/3))*dw5_daccpstr*dw5_dstress + (1/3)*(w5**(-2/3))*d2w5_daccpstrdstress)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute derivative of effective stress w.r.t. elastic strain deff_destrain = ddot24_1(flow_vector, e_consistent_tangent) # Compute derivative of effective stress w.r.t. accumulated plastic # strain deff_daccpstr = ( a_hard_slope*(w1 + w5**(1/3)) + yield_a*(dw1_daccpstr + (1/3)*(w5**(-2/3))*dw5_daccpstr)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute derivative of first residual w.r.t. to elastic strain dr1_destrain = fosym + inc_p_mult*dflow_destrain # Compute derivative of first residual w.r.t. to accumulated plastic # strain dr1_daccpstr = inc_p_mult*dflow_daccpstr # Compute derivative of first residual w.r.t. to incremental plastic # multiplier dr1_dincpm = flow_vector # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute derivatives of second residual if is_associative_hardening: # Compute derivative of second residual w.r.t. to elastic strain dr2_destrain = torch.zeros_like(flow_vector, device=self._device) # Compute derivative of second residual w.r.t. to accumulated # plastic strain dr2_daccpstr = torch.tensor(1.0, device=self._device) # Compute derivative of second residual w.r.t. to incremental # plastic multiplier dr2_dincpm = (torch.tensor(-1.0, device=self._device) *associative_hardening_factor) else: # Compute derivative of second residual w.r.t. to elastic strain dr2_destrain = \ -inc_p_mult*math.sqrt(2/3)*(1/norm_flow_vector)*ddot24_1( flow_vector, dflow_destrain) # Compute derivative of second residual w.r.t. to accumulated # plastic strain dr2_daccpstr = \ 1.0 - inc_p_mult*math.sqrt(2/3)*(1/norm_flow_vector)*ddot22_1( flow_vector, dflow_daccpstr) # Compute derivative of second residual w.r.t. to incremental # plastic multiplier dr2_dincpm = -math.sqrt(2/3)*norm_flow_vector # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute derivative of third residual w.r.t. to elastic strain dr3_destrain = (1.0/init_yield_stress)*deff_destrain # Compute derivative of third residual w.r.t. to accumulated plastic # strain dr3_daccpstr = (1.0/init_yield_stress)*(deff_daccpstr - hard_slope) # Compute derivative of third residual w.r.t. to incremental plastic # multiplier dr3_dincpm = torch.tensor(0.0, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build first residual derivatives matrices j11 = vget_tensor_mf(dr1_destrain, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) j12 = vget_tensor_mf(dr1_daccpstr, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device).reshape(-1, 1) j13 = vget_tensor_mf(dr1_dincpm, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device).reshape(-1, 1) # Build second residual derivatives matrices j21 = vget_tensor_mf(dr2_destrain, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device).reshape(1, -1) j22 = dr2_daccpstr.reshape(1, 1) j23 = dr2_dincpm.reshape(1, 1) # Build third residual derivatives matrices j31 = vget_tensor_mf(dr3_destrain, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device).reshape(1, -1) j32 = dr3_daccpstr.reshape(1, 1) j33 = dr3_dincpm.reshape(1, 1) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build Jacobian matrix jacobian = torch.cat((torch.cat((j11, j12, j13), dim=1), torch.cat((j21, j22, j23), dim=1), torch.cat((j31, j32, j33), dim=1)), dim=0) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return residual_1, residual_2, residual_3, jacobian
# -------------------------------------------------------------------------
[docs] def get_numerical_jacobian(self, n_dim, comp_order_sym, e_strain, e_trial_strain, acc_p_strain, acc_p_strain_old, inc_p_mult, e_consistent_tangent, init_yield_stress, hardening_law, hardening_parameters, a_hardening_law, a_hardening_parameters, b_hardening_law, b_hardening_parameters, c_hardening_law, c_hardening_parameters, d_hardening_law, d_hardening_parameters, is_associative_hardening=False, is_verbose=False): """Compute state update Jacobian matrix with finite differences. Parameters ---------- n_dim : int Problem number of spatial dimensions. comp_order_sym : list Strain/Stress components symmetric order. e_strain : torch.Tensor(2d) Elastic strain. e_trial_strain : torch.Tensor(2d) Elastic trial strain. acc_p_strain : torch.Tensor(0d) Accumulated plastic strain. acc_p_strain_old : torch.Tensor(0d) Last converged accumulated plastic strain. inc_p_mult : torch.Tensor(0d) Incremental plastic multiplier. e_consistent_tangent : torch.Tensor(4d) Elastic consistent tangent modulus. init_yield_stress : torch.Tensor(0d) Initial yield stress. hardening_law : function Hardening law. hardening_parameters : dict Hardening law parameters. a_hardening_law : function Yield parameter hardening law. a_hardening_parameters : function Yield parameter hardening law parameters. b_hardening_law : function Yield parameter hardening law. b_hardening_parameters : function Yield parameter hardening law parameters. c_hardening_law : function Yield parameter hardening law. c_hardening_parameters : function Yield parameter hardening law parameters. d_hardening_law : function Yield parameter hardening law. d_hardening_parameters : function Yield parameter hardening law parameters. is_associative_hardening : bool, default=False If True, then adopt associative hardening rule. is_verbose : bool, default=False If True, enable verbose output. Returns ------- num_jacobian : torch.Tensor(2d) Jacobian matrix. """ # Get number of components n_comp = len(comp_order_sym) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set base elastic strain (matricial form) base_e_strain_mf = \ vget_tensor_mf(e_strain, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) # Set base accumulated plastic strain base_acc_p_strain = acc_p_strain # Set base incremental plastic multiplier base_inc_p_mult = inc_p_mult # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute base residuals base_residual_1, base_residual_2, base_residual_3, jacobian = \ self.get_residual_and_jacobian( n_dim, comp_order_sym, e_strain, e_trial_strain, acc_p_strain, acc_p_strain_old, inc_p_mult, e_consistent_tangent, init_yield_stress, hardening_law, hardening_parameters, a_hardening_law, a_hardening_parameters, b_hardening_law, b_hardening_parameters, c_hardening_law, c_hardening_parameters, d_hardening_law, d_hardening_parameters, is_associative_hardening=is_associative_hardening) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build base residuals (matricial form) base_r1_mf = vget_tensor_mf(base_residual_1, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) base_r2 = base_residual_2.reshape(-1) base_r3 = base_residual_3.reshape(-1) # Build base residual vector (matricial form) base_residual_mf = torch.cat((base_r1_mf, base_r2, base_r3), dim=0) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set perturbation delta = torch.tensor(1e-6) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize numerical Jacobian num_jacobian = torch.zeros_like(jacobian) # Loop over components for i in range(n_comp + 2): # Initialize perturbed elastic strain (matricial form) pert_e_strain_mf = base_e_strain_mf.clone() # Initialize perturbed accumulated plastic strain pert_acc_p_strain = base_acc_p_strain.clone() # Initialize perturbed incremental plastic multiplier pert_inc_p_mult = base_inc_p_mult.clone() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Add perturbation if i == n_comp + 1: # Set pertubation pert = delta*torch.max(torch.abs(pert_inc_p_mult), torch.tensor(1e-6)) # Set perturbed incremental plastic multiplier pert_inc_p_mult += pert elif i == n_comp: # Set pertubation pert = delta*torch.max(torch.abs(pert_acc_p_strain), torch.tensor(1e-6)) # Set perturbed accumulated plastic strain pert_acc_p_strain += pert else: # Set pertubation pert = delta*torch.max(torch.abs(pert_e_strain_mf[i]), torch.tensor(1e-6)) # Set perturbed elastic strain (matricial form) pert_e_strain_mf[i] += pert # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get perturbed elastic strain pert_e_strain = vget_tensor_from_mf( pert_e_strain_mf, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute perturbed residuals pert_residual_1, pert_residual_2, pert_residual_3, _ = \ self.get_residual_and_jacobian( n_dim, comp_order_sym, pert_e_strain, e_trial_strain, pert_acc_p_strain, acc_p_strain_old, pert_inc_p_mult, e_consistent_tangent, init_yield_stress, hardening_law, hardening_parameters, a_hardening_law, a_hardening_parameters, b_hardening_law, b_hardening_parameters, c_hardening_law, c_hardening_parameters, d_hardening_law, d_hardening_parameters, is_associative_hardening=is_associative_hardening) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build perturbed residuals (matricial form) pert_r1_mf = vget_tensor_mf(pert_residual_1, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) pert_r2 = pert_residual_2.reshape(-1) pert_r3 = pert_residual_3.reshape(-1) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build perturbed residual vector (matricial form) pert_residual_mf = torch.cat((pert_r1_mf, pert_r2, pert_r3), dim=0) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute and assemble numerical derivative num_jacobian[:, i] = (pert_residual_mf - base_residual_mf)/pert # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Display Jacobian comparison if is_verbose: torch.set_printoptions(linewidth=1000) print('\nJacobian comparison:') print('\nAnalytical:') print(jacobian) print('\nNumerical:') print(num_jacobian) print() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Display numerical derivatives if is_verbose: self.compute_num_derivatives(n_dim, comp_order_sym, e_strain, e_consistent_tangent) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return num_jacobian
# -------------------------------------------------------------------------
[docs] def compute_num_derivatives(self, n_dim, comp_order_sym, e_strain, e_consistent_tangent): """Compute numerical derivatives by finite differences. Parameters ---------- n_dim : int Problem number of spatial dimensions. comp_order_sym : list Strain/Stress components symmetric order. e_strain : torch.Tensor(2d) Elastic strain. e_consistent_tangent : torch.Tensor(4d) Elastic consistent tangent modulus. """ # Get number of components n_comp = len(comp_order_sym) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute base stress base_stress = ddot42_1(e_consistent_tangent, e_strain) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set base stress (matricial form) base_stress_mf = \ vget_tensor_mf(base_stress, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set numerical derivative option option = 'sod_stress_invariants' # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set display options torch.set_printoptions(linewidth=1000) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute numerical derivatives if option == 'fod_stress_invariants': # Compute base stress invariants base_i1, _, _, _, base_j2, base_j3 = \ self.get_stress_invariants(base_stress) base_i1, _, _, _, base_j2, base_j3, di1_dstress, dj2_dstress, \ dj3_dstress, _, _ = self.get_stress_invariants_and_derivatives( n_dim, base_stress) # Build base vector base_vector = torch.cat( (base_i1.view(-1), base_j2.view(-1), base_j3.view(-1)), dim=0) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set perturbation delta = torch.tensor(1e-6) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize numerical derivatives num_derivatives = torch.zeros(3, n_comp) # Loop over components for i in range(n_comp): # Initialize perturbed stress (matricial form) pert_stress_mf = base_stress_mf.clone() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set pertubation pert = delta*torch.max(torch.abs(pert_stress_mf[i]), torch.tensor(1e-6)) # Set perturbed stress (matricial form) pert_stress_mf[i] += \ delta*torch.max(torch.abs(pert_stress_mf[i]), torch.tensor(1e-6)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get perturbed stress pert_stress = vget_tensor_from_mf( pert_stress_mf, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute perturbed stress invariants pert_i1, _, _, _, pert_j2, pert_j3, _, _, _, _, _ = \ self.get_stress_invariants_and_derivatives( n_dim, pert_stress) # Build perturbed vector pert_vector = torch.cat( (pert_i1.view(-1), pert_j2.view(-1), pert_j3.view(-1)), dim=0) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute and assemble numerical derivatives num_derivatives[:, i] = (pert_vector - base_vector)/pert # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build analytical first-order derivatives (matricial form) di1_dstress_mf = \ vget_tensor_mf(di1_dstress, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) dj2_dstress_mf = \ vget_tensor_mf(dj2_dstress, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) dj3_dstress_mf = \ vget_tensor_mf(dj3_dstress, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) # Concatenate analytical first-order derivatives djx_dstress_mf = torch.stack( (di1_dstress_mf, dj2_dstress_mf, dj3_dstress_mf), dim=0) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Display numerical derivatives print('\nStress invariants numerical first-order derivatives ' '(i1, j2, j3) comparison:') print('\nAnalytical:') print(djx_dstress_mf) print('\nNumerical:') print(num_derivatives) print() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ elif option == 'sod_stress_invariants': # Compute base stress invariants derivatives w.r.t. stress _, _, _, _, _, _, _, base_dj2_dstress, base_dj3_dstress, \ d2j2_dstress2, d2j3_dstress2 = \ self.get_stress_invariants_and_derivatives( n_dim, base_stress) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build base derivatives (matricial form) base_dj2_dstress_mf = \ vget_tensor_mf(base_dj2_dstress, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) base_dj3_dstress_mf = \ vget_tensor_mf(base_dj3_dstress, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build base vector base_vector = torch.cat( (base_dj2_dstress_mf, base_dj3_dstress_mf), dim=0) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set perturbation delta = torch.tensor(1e-6) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize numerical derivatives num_derivatives = torch.zeros(2*n_comp, n_comp) # Loop over components for i in range(n_comp): # Initialize perturbed stress (matricial form) pert_stress_mf = base_stress_mf.clone() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set pertubation pert = delta*torch.max(torch.abs(pert_stress_mf[i]), torch.tensor(1e-6)) # Set perturbed stress (matricial form) pert_stress_mf[i] += \ delta*torch.max(torch.abs(pert_stress_mf[i]), torch.tensor(1e-6)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get perturbed stress pert_stress = vget_tensor_from_mf( pert_stress_mf, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute perturbed stress invariants derivatives _, _, _, _, _, _, _, pert_dj2_dstress, pert_dj3_dstress, _, \ _ = self.get_stress_invariants_and_derivatives( n_dim, pert_stress) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build perturbed derivatives (matricial form) pert_dj2_dstress_mf = \ vget_tensor_mf(pert_dj2_dstress, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) pert_dj3_dstress_mf = \ vget_tensor_mf(pert_dj3_dstress, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build perturbed vector pert_vector = torch.cat( (pert_dj2_dstress_mf, pert_dj3_dstress_mf), dim=0) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute and assemble numerical derivatives num_derivatives[:, i] = (pert_vector - base_vector)/pert # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build analytical second-order derivatives (matricial form) d2j2_dstress2_mf = \ vget_tensor_mf(d2j2_dstress2, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) d2j3_dstress2_mf = \ vget_tensor_mf(d2j3_dstress2, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) # Concatenate analytical second-order derivatives d2jx_dstress2_mf = torch.cat( (d2j2_dstress2_mf, d2j3_dstress2_mf), dim=0) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Display numerical derivatives print('\nStress invariants numerical second-order derivatives ' '(j2, j3) comparison:') print('\nAnalytical:') print(d2jx_dstress2_mf) print('\nNumerical:') print(num_derivatives) print()
# -------------------------------------------------------------------------
[docs] @classmethod def convexity_return_mapping(cls, yield_c, yield_d): """Perform convexity return-mapping. For a given set (c, d), the convexity return-mapping works as follows: (1) If the yield parameters (c, d) lie inside the convexity domain (yield surface is convex), then they are kept unchanged; (2) If the yield parameters (c, d) lie outside the convexity domain (yield surface is not convex), then they are updated to the convexity domain boundary point along the same angular direction. Parameters ---------- yield_c : torch.Tensor(0d) Yield parameter. yield_d : torch.Tensor(0d) Yield parameter. Returns ------- is_convex : bool If True, then yield surface is convex, False otherwise. yield_c : torch.Tensor(0d) Yield parameter. yield_d : torch.Tensor(0d) Yield parameter. """ # Check yield surface convexity is_convex = cls.check_yield_surface_convexity(yield_c, yield_d) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Perform convexity return-mapping if not is_convex: # Compute angular direction theta = torch.atan2(yield_d, yield_c) # Compute convexity boundary point yield_c, yield_d = cls.directional_convex_boundary(theta) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return is_convex, yield_c, yield_d
# -------------------------------------------------------------------------
[docs] @classmethod def compute_convex_boundary(cls, n_theta=360): """Compute convexity domain boundary. Parameters ---------- n_theta : int, default=360 Number of discrete angular coordinates to discretize the convexity boundary domain. Returns ------- convex_boundary : torch.Tensor(2d) Convexity domain boundary stored as torch.Tensor(2d) of shape (n_point, 2), where each point is stored as (yield_c, yield_d). """ # Set discrete angular coordinates thetas = torch.linspace(0, 2.0*torch.pi, steps=n_theta) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize convexity domain boundary convex_boundary = torch.zeros(n_theta, 2) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Loop over discrete angular coordinates for i, theta in enumerate(thetas): # Compute directional convexity domain boundary yield_c, yield_d = cls.directional_convex_boundary(theta) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Store convexity domain boundary point convex_boundary[i, :] = torch.tensor((yield_c, yield_d)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return convex_boundary
# -------------------------------------------------------------------------
[docs] @classmethod def directional_convex_boundary(cls, theta, r_lower=0.0, r_upper=5.0, search_tol=1e-6): """Compute convexity domain boundary along given angular direction. Parameters ---------- theta : torch.Tensor(0d) Angular coordinate in yield parameters domain (radians). r_lower : float, default=0.0 Initial searching radius lower bound. r_upper : float, default=5.0 Initial searching radius upper bound. search_tol : float, default = 1e-6 Searching window tolerance. Return ------ yield_c : torch.Tensor(0d) Yield parameter. yield_d : torch.Tensor(0d) Yield parameter. """ # Store input angle type input_dtype = theta.dtype # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize searching window r_window = r_upper - r_lower # Initialize mean searching radius r_mean = (r_upper + r_lower)/2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Convexity boundary searching loop while (r_window > search_tol): # Compute yield parameters yield_c = r_mean*torch.cos(theta) yield_d = r_mean*torch.sin(theta) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Check yield surface convexity is_convex = cls.check_yield_surface_convexity(yield_c, yield_d) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update searching bounds if is_convex: r_lower = r_mean else: r_upper = r_mean # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update mean searching radius r_mean = (r_upper + r_lower)/2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update searching window r_window = r_upper - r_lower # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Enforce consistent output type yield_c = yield_c.to(input_dtype) yield_d = yield_d.to(input_dtype) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return yield_c, yield_d
# =========================================================================
[docs] @classmethod def check_yield_surface_convexity(cls, yield_c, yield_d): """Check yield surface convexity. Geometry-Inspired Numerical Convex Analysis (GINCA) method. Parameters ---------- yield_c : torch.Tensor(0d) Yield parameter. yield_d : torch.Tensor(0d) Yield parameter. Returns ------- is_convex : bool If True, then yield surface is convex, False otherwise. """ def get_dev_stress(lode_angle): """Compute deviatoric stress from Lode angle. Parameters ---------- lode_angle : torch.Tensor(0d) Lode angle (radians). Returns ------- dev_stress : torch.Tensor(2d) Deviatoric stress. """ # Compute principal deviatoric stresses s1 = (2/3)*torch.cos(lode_angle) s2 = (2/3)*torch.cos((2*torch.pi/3) - lode_angle) s3 = (2/3)*torch.cos((4*torch.pi/3) - lode_angle) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build deviatoric stress tensor dev_stress = torch.diag(torch.stack([s1, s2, s3])) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return dev_stress # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def convexity_function(dev_stress, yield_c, yield_d): """Function to evaluate convexity. Parameters ---------- dev_stress : torch.Tensor(2d) Deviatoric stress. yield_c : torch.Tensor(0d) Yield parameter. yield_d : torch.Tensor(0d) Yield parameter. Returns ------- val : torch.Tensor(0d) Convexity function value. """ # Compute second invariant of deviatoric stress tensor j2 = 0.5*torch.sum(dev_stress*dev_stress) # Compute third invariant of deviatoric stress tensor j3 = torch.det(dev_stress) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute convexity function val = ((j2**3 - yield_c*j3**2)**(1/2) - yield_d*j3)**(1/3) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return val # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def evaluate_convexity_lode(lode_angle, yield_c, yield_d, d_lode=None): """Evaluate convexity function for given Lode angle. Parameters ---------- lode_angle : torch.Tensor(0d) Lode angle (radians). yield_c : torch.Tensor(0d) Yield parameter. yield_d : torch.Tensor(0d) Yield parameter. d_lode : torch.Tensor(0d), default=None Infinitesimal Lode angle (radians). Returns ------- convex_fun_val : torch.Tensor(0d) Convexity function value. """ # Enforce double precision lode_angle = lode_angle.double() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set infinitesimal Lode angle if d_lode is None: lode_small = torch.deg2rad( torch.tensor(0.001, device=lode_angle.device)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute arc point A deviatoric stress lode_angle_a = lode_angle dev_stress_a = get_dev_stress(lode_angle_a) dev_stress_a = \ dev_stress_a/convexity_function(dev_stress_a, yield_c, yield_d) # Compute arc point B deviatoric stress lode_angle_b = lode_angle + lode_small dev_stress_b = get_dev_stress(lode_angle_b) dev_stress_b = \ dev_stress_b/convexity_function(dev_stress_b, yield_c, yield_d) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute midpoint C deviatoric stress dev_stress_c = (dev_stress_a + dev_stress_b)/2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Evaluate convexity function convex_fun_val = convexity_function(dev_stress_c, yield_c, yield_d) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return convex_fun_val # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get yield parameters device device = yield_c.device # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set discrete Lode angles lode_angles = torch.deg2rad( torch.linspace(0, 360, steps=1000, device=device)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set vectorized convexity function computation (batch along Lode # angles) vmap_evaluate_convexity_lode = \ torch.vmap(evaluate_convexity_lode, in_dims=(0, None, None), out_dims=(0,)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute convexity function values convex_fun_vals = \ vmap_evaluate_convexity_lode(lode_angles, yield_c, yield_d) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Check yield surface convexity is_convex = torch.all(convex_fun_vals <= 1.0) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return is_convex
# =========================================================================
[docs] @classmethod def plot_convexity_boundary(cls, convex_boundary, parameters_paths=None, is_path_arrows=True, rect_search_domain=None, is_plot_legend=False, save_dir=None, is_save_fig=False, is_stdout_display=False, is_latex=False): """Plot convexity domain boundary. Parameters ---------- convex_boundary : torch.Tensor(2d) Convexity domain boundary stored as torch.Tensor(2d) of shape (n_point, 2), where each point is stored as (yield_c, yield_d). parameters_paths : dict, default=None For each yield parameters path (key, str), store a torch.Tensor(2d) (item, torch.Tensor) of shape (n_point, 2), where each point is stored as (yield_c, yield_d). is_path_arrows : bool, default=True If True, then yield parameters paths include directional arrows along the path, False otherwise. rect_search_domain : tuple, default=None Rectangular search domain boundary defined by the corresponding limits along each direction as ((x_min, x_max), (y_min, y_max)). is_plot_legend : bool, default=False If True, then plot legend. save_dir : str, default=None Directory where data set plots are saved. is_save_fig : bool, default=False Save figure. is_stdout_display : bool, default=False True if displaying figure to standard output device, False otherwise. is_latex : bool, default=False If True, then render all strings in LaTeX. If LaTex is not available, then this option is silently set to False and all input strings are processed to remove $(...)$ enclosure. """ # Set data array data_xy = convex_boundary.numpy() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set data labels if is_plot_legend: data_labels = ['Convexity boundary',] else: data_labels = None # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set axes labels x_label = 'Yield parameter $c$' y_label = 'Yield parameter $d$' # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Plot convexity domain boundary figure, axes = plot_xy_data( data_xy, data_labels=data_labels, x_label=x_label, y_label=y_label, x_scale='linear', y_scale='linear', is_latex=is_latex) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Plot yield parameters paths if isinstance(parameters_paths, dict): # Set line width if is_path_arrows: lw = 0 else: lw = None # Loop over paths for path_label, path_points in parameters_paths.items(): # Convert parameters path path_points = path_points.numpy() # Plot parameters path points (line, ) = axes.plot(path_points[:, 0], path_points[:, 1], lw=lw, marker='o', ms=3, markeredgecolor='k', markeredgewidth=0.5, label=path_label, zorder=10) # Plot parameters path directional arrows if path_points.shape[0] > 1: axes.quiver(path_points[:-1, 0], path_points[:-1, 1], np.diff(path_points[:, 0]), np.diff(path_points[:, 1]), angles="xy", color=line.get_color(), scale_units="xy", scale=1, width=0.005, zorder=5) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Plot rectangular search domain boundary if isinstance(rect_search_domain, tuple): # Get rectangular search domain boundaries search_x_min, search_x_max = rect_search_domain[0] search_y_min, search_y_max = rect_search_domain[1] # Build rectangular search domain boundary search_domain = \ patches.Rectangle((search_x_min, search_y_min), search_x_max - search_x_min, search_y_max - search_y_min, edgecolor='#555555', facecolor='none', linewidth=1.5, linestyle='--', zorder=2) # Plot rectangular search domain boundary axes.add_patch(search_domain) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Plot legend if is_plot_legend: legend = axes.legend(loc='best', frameon=True, fancybox=True, facecolor='inherit', edgecolor='inherit', fontsize=8, framealpha=1.0) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set filename filename = f'lou_yield_convexity_domain' # Save figure if is_save_fig: save_figure(figure, filename, format='pdf', save_dir=save_dir) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Display figure if is_stdout_display: plt.show() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Close plot plt.close('all')
# ============================================================================= """ # Compute Jacobian in the particular case of: # - Yield parameters c=0 and d=0 # - Associative hardening rule # - Constant yield parameters a and b # # How to use: Paste at the end of get_jacobian() # # Compute Jacobian tensor terms j11_tensor = fosym + 0.5*yield_a*inc_p_mult*( dyad22_1(dev_stress, -0.5*(j2**(-3/2))*ddot24_1( dev_stress, e_consistent_tangent)) + (j2**(-1/2))*ddot44_1(fodevprojsym, e_consistent_tangent)) j21_tensor = torch.zeros_like(flow_vector, device=self._device) j31_tensor = (1.0/init_yield_stress)*( yield_a*(0.5*(j2**(-1/2))*ddot24_1(dev_stress, e_consistent_tangent)) + yield_a*yield_b*ddot24_1(soid, e_consistent_tangent)) j12_tensor = torch.zeros_like(flow_vector, device=self._device) j22_tensor = torch.tensor(1.0, device=self._device) j32_tensor = -(1.0/init_yield_stress)*hard_slope j13_tensor = flow_vector j23_tensor = torch.tensor(-1.0, device=self._device) j33_tensor = torch.tensor(0.0, device=self._device) # Get Jacobian terms matricial form val_j11 = vget_tensor_mf(j11_tensor, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device) val_j21 = vget_tensor_mf(j21_tensor, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device).reshape(1, -1) val_j31 = vget_tensor_mf(j31_tensor, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device).reshape(1, -1) val_j12 = vget_tensor_mf(j12_tensor, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device).reshape(-1, 1) val_j22 = j22_tensor.reshape(1, 1) val_j32 = j32_tensor.reshape(1, 1) val_j13 = vget_tensor_mf(j13_tensor, n_dim, comp_order_sym, is_kelvin_notation=True, device=self._device).reshape(-1, 1) val_j23 = j23_tensor.reshape(1, 1) val_j33 = j33_tensor.reshape(1, 1) # Assemble Jacobian matrix val_jacobian = torch.cat( (torch.cat((val_j11, val_j12, val_j13), dim=1), torch.cat((val_j21, val_j22, val_j23), dim=1), torch.cat((val_j31, val_j32, val_j33), dim=1)), dim=0) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute Jacobian condition number jacobian_cnum = torch.linalg.norm(jacobian)*torch.linalg.norm( torch.inverse(jacobian)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Display Jacobian comparison is_print_jacobian = True if is_print_jacobian: torch.set_printoptions(linewidth=1000) print('\n\nJACOBIAN VALIDATION') print('\nGeneral jacobian:') print(jacobian) print('\nParticular jacobian:') print(val_jacobian) print('\nRelative error:') eps = 1e-6 abs_diff = torch.abs(jacobian - val_jacobian) abs_b = torch.abs(val_jacobian) mask = abs_b >= eps rerror = abs_diff.clone() rerror[mask] = abs_diff[mask]/abs_b[mask] print(rerror) print(f'\nJacobian condition number = {jacobian_cnum}') print() """