Source code for simulators.fetorch.material.models.vmap.drucker_prager

"""Drucker-Prager elasto-plastic constitutive model with isotropic hardening.

This module includes the implementation of the Drucker-Prager constitutive
model with non-associative plastic flor rule and associative isotropic strain
hardening.

This implementation is made compatible with the use of PyTorch vectorizing
maps that, at the current moment, do not support auto differentiable
data-dependent control flows based on if statements or similar constructs
(e.g., torch.cond()). Workarounds based on torch.where() were successfully
implemented, but these lead to complex or inefficient coding, mainly because
they are constrained by elementwise operations (require pre-computations of
true and false paths or repeated true/false function calls for each element).

When torch.cond() is available, the state_update() method can be simplified as
follows:

1. The condition in torch.cond() does not need to be a Tensor with the same
   shape as the true/false output tensors
   
2. Avoid flow vector pre-computations - only perform the needed step
   computation based on torch.cond()

3. Avoid elastic and plastic steps pre-computations - only perform the needed
   step computation based on torch.cond() condition

4. The is_elastic_step flag is no longer required in _plastic_step() nor in
   _plastic_step_apex()
   
5. Avoid elastic and plastic consistent tangent moduli pre-computations - only
   compute the required tangent based on torch.cond() condition


Classes
-------
DruckerPragerVMAP
    Drucker-Prager constitutive model with isotropic strain hardening.
"""
#
#                                                                       Modules
# =============================================================================
# Standard
import math
# Third-party
import torch
# Local
from simulators.fetorch.material.models.interface import ConstitutiveModel
from simulators.fetorch.material.models.standard.elastic import Elastic
from simulators.fetorch.math.matrixops import get_problem_type_parameters, \
    vget_tensor_mf, vget_tensor_from_mf, vget_state_3Dmf_from_2Dmf, \
    vget_state_2Dmf_from_3Dmf
from simulators.fetorch.math.tensorops import get_id_operators, dyad22_1
from utilities.type_conversion import convert_dict_to_tensor, \
    convert_tensor_to_float64, convert_dict_to_float64, \
    convert_dict_to_float32, convert_tensor_to_float32
#
#                                                          Authorship & Credits
# =============================================================================
__author__ = 'Bernardo Ferreira (bernardo_ferreira@brown.edu)'
__credits__ = ['Bernardo Ferreira', ]
__status__ = 'Stable'
# =============================================================================
#
# =============================================================================
[docs]class DruckerPragerVMAP(ConstitutiveModel): """Drucker-Prager constitutive model with isotropic strain hardening. Compatible with vectorized mapping. Attributes ---------- _name : str Constitutive model name. _strain_type : {'infinitesimal', 'finite', 'finite-kinext'} Material constitutive model strain formulation: infinitesimal strain formulation ('infinitesimal'), finite strain formulation ('finite') or finite strain formulation through kinematic extension ('finite-kinext'). _model_parameters : dict Material constitutive model parameters. _n_dim : int Problem number of spatial dimensions. _comp_order_sym : list Strain/Stress components symmetric order. _comp_order_nsym : list Strain/Stress components nonsymmetric order. _is_su_float64 : bool If True, then state update is locally computed in floating-point double precision. If False, then default floating-point precision is assumed. _device_type : {'cpu', 'cuda'} Type of device on which torch.Tensor is allocated. _device : torch.device Device on which torch.Tensor is allocated. Methods ------- get_required_model_parameters() Get required material constitutive model parameters. state_init(self) Get initialized material constitutive model state variables. state_update(self, inc_strain, state_variables_old) Perform material constitutive model state update. """
[docs] def __init__(self, strain_formulation, problem_type, model_parameters, is_su_float64=True, device_type='cpu'): """Constitutive model constructor. Parameters ---------- strain_formulation: {'infinitesimal', 'finite'} Problem strain formulation. problem_type : int Problem type: 2D plane strain (1), 2D plane stress (2), 2D axisymmetric (3) and 3D (4). model_parameters : dict Material constitutive model parameters. is_su_float64 : bool, default=True If True, then state update is locally computed in floating-point double precision. If False, then default floating-point precision is assumed. device_type : {'cpu', 'cuda'}, default='cpu' Type of device on which torch.Tensor is allocated. """ # Set material constitutive model name self._name = 'drucker_prager' # Set constitutive model strain formulation self._strain_type = 'finite-kinext' # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set initialization parameters self._strain_formulation = strain_formulation self._problem_type = problem_type self._model_parameters = convert_dict_to_tensor(model_parameters, is_inplace=True) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set state update floating-point precision self._is_su_float64 = is_su_float64 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set device self.set_device(device_type) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get problem type parameters self._n_dim, self._comp_order_sym, self._comp_order_nsym = \ get_problem_type_parameters(problem_type) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get elastic symmetry elastic_symmetry = model_parameters['elastic_symmetry'] # Check finite strains formulation if self._strain_formulation == 'finite' and \ elastic_symmetry != 'isotropic': raise RuntimeError('The Drucker-Prager constitutive model is only ' 'available under finite strains for the ' 'elastic isotropic case.') # Compute technical constants of elasticity if elastic_symmetry == 'isotropic': # Compute technical constants of elasticity technical_constants = Elastic.get_technical_from_elastic_moduli( elastic_symmetry, model_parameters) # Assemble technical constants of elasticity self._model_parameters.update(technical_constants) else: raise RuntimeError('The Drucker-Prager constitutive model is ' 'currently only available for the elastic ' 'isotropic case.')
# -------------------------------------------------------------------------
[docs] @staticmethod def get_required_model_parameters(): """Get required material constitutive model parameters. Model parameters: - 'elastic_symmetry' : Elastic symmetry (str, {'isotropic', 'transverse_isotropic', 'orthotropic', 'monoclinic', 'triclinic'}); - 'elastic_moduli' : Elastic moduli (dict, {'Eijkl': float}); - 'euler_angles' : Euler angles (degrees) sorted according with Bunge convention (tuple[float]). - 'yield_cohesion_parameter' : Yield surface cohesion parameter - 'yield_pressure_parameter' : Yield surface pressure parameter - 'flow_pressure_parameter' : Plastic flow rule pressure parameter - 'hardening_law' : Isotropic hardening law (function) - 'hardening_parameters' : Isotropic hardening law parameters (dict) Returns ------- model_parameters_names : tuple[str] Material constitutive model parameters names (str). """ # Set material properties names model_parameters_names = ('elastic_symmetry', 'elastic_moduli', 'euler_angles', 'yield_cohesion_parameter', 'yield_pressure_parameter', 'flow_pressure_parameter', 'hardening_law', 'hardening_parameters') # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return model_parameters_names
# -------------------------------------------------------------------------
[docs] def state_init(self): """Get initialized material constitutive model state variables. Constitutive model state variables: * ``e_strain_mf`` * *Infinitesimal strains*: Elastic infinitesimal strain tensor (matricial form). * *Finite strains*: Elastic spatial logarithmic strain tensor (matricial form). * *Symbol*: :math:`\\boldsymbol{\\varepsilon^{e}}` / :math:`\\boldsymbol{\\varepsilon^{e}}` * ``acc_p_strain`` * Accumulated plastic strain. * *Symbol*: :math:`\\bar{\\varepsilon}^{p}` * ``strain_mf`` * *Infinitesimal strains*: Infinitesimal strain tensor (matricial form). * *Finite strains*: Spatial logarithmic strain tensor (matricial form). * *Symbol*: :math:`\\boldsymbol{\\varepsilon}` / :math:`\\boldsymbol{\\varepsilon}` * ``stress_mf`` * *Infinitesimal strains*: Cauchy stress tensor (matricial form). * *Finite strains*: Kirchhoff stress tensor (matricial form) within :py:meth:`state_update`, first Piola-Kirchhoff stress tensor (matricial form) otherwise. * *Symbol*: :math:`\\boldsymbol{\\sigma}` / (:math:`\\boldsymbol{\\tau}`, :math:`\\boldsymbol{P}`) * ``is_plastic`` * Plastic step flag. * ``is_su_fail`` * State update failure flag. * ``is_apex_return`` * Return-mapping to apex flag. ---- Returns ------- state_variables_init : dict Initialized material constitutive model state variables. """ # Initialize constitutive model state variables state_variables_init = dict() # Initialize strain tensors state_variables_init['e_strain_mf'] = vget_tensor_mf( torch.zeros((self._n_dim, self._n_dim), device=self._device), self._n_dim, self._comp_order_sym) state_variables_init['strain_mf'] = \ state_variables_init['e_strain_mf'].clone() # Initialize stress tensors if self._strain_formulation == 'infinitesimal': # Cauchy stress tensor (symmetric) state_variables_init['stress_mf'] = vget_tensor_mf( torch.zeros((self._n_dim, self._n_dim), device=self._device), self._n_dim, self._comp_order_sym) else: # First Piola-Kirchhoff stress tensor (nonsymmetric) state_variables_init['stress_mf'] = vget_tensor_mf( torch.zeros((self._n_dim, self._n_dim), device=self._device), self._n_dim, self._comp_order_nsym) # Initialize internal variables state_variables_init['acc_p_strain'] = \ torch.tensor(0.0, device=self._device) # Initialize state flags state_variables_init['is_plast'] = \ torch.tensor(False, device=self._device) state_variables_init['is_su_fail'] = \ torch.tensor(False, device=self._device) state_variables_init['is_apex_return'] = \ torch.tensor(False, device=self._device) # Set additional out-of-plane strain and stress components if self._problem_type == 1: state_variables_init['e_strain_33'] = \ torch.tensor(0.0, device=self._device) state_variables_init['stress_33'] = \ torch.tensor(0.0, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Return return state_variables_init
# -------------------------------------------------------------------------
[docs] def state_update(self, inc_strain, state_variables_old): """Perform material constitutive model state update. Parameters ---------- inc_strain : torch.Tensor(2d) Incremental strain second-order tensor. state_variables_old : dict Last converged constitutive model material state variables. Returns ------- state_variables : dict Material constitutive model state variables. consistent_tangent_mf : torch.Tensor(2d) Material constitutive model consistent tangent modulus stored in matricial form. """ # Get model parameters model_parameters = self._model_parameters # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize floating-point precision conversion flag is_precision_conversion = False # Handle state update floating-point precision if torch.get_default_dtype() == torch.float32 and self._is_su_float64: # Set floating-point precision conversion flag is_precision_conversion = True # Set default floating-point precision torch.set_default_dtype(torch.float64) # Perform floating-point precision conversion model_parameters = convert_dict_to_float64(model_parameters, is_inplace=False) inc_strain = convert_tensor_to_float64(inc_strain) state_variables_old = convert_dict_to_float64(state_variables_old, is_inplace=False) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set state update convergence tolerance su_conv_tol = 1e-6 # Set state update maximum number of iterations su_max_n_iterations = 10 # Set minimum threshold to handle values close or equal to zero small = 1e-8 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build incremental strain tensor matricial form inc_strain_mf = vget_tensor_mf(inc_strain, self._n_dim, self._comp_order_sym, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get material properties E = model_parameters['E'] v = model_parameters['v'] xi = model_parameters['yield_cohesion_parameter'] etay = model_parameters['yield_pressure_parameter'] etaf = model_parameters['flow_pressure_parameter'] # Get material isotropic strain hardening law hardening_law = model_parameters['hardening_law'] hardening_parameters = model_parameters['hardening_parameters'] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute bulk and shear modulus K = E/(3.0*(1.0 - 2.0*v)) G = E/(2.0*(1.0 + v)) # Compute Lamé parameters lam = (E*v)/((1.0 + v)*(1.0 - 2.0*v)) miu = E/(2.0*(1.0 + v)) # Compute material parameters alpha = xi/etaf beta = xi/etay # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get last increment converged state variables e_strain_old_mf = state_variables_old['e_strain_mf'] p_strain_old_mf = state_variables_old['strain_mf'] - e_strain_old_mf acc_p_strain_old = state_variables_old['acc_p_strain'] if self._problem_type == 1: e_strain_33_old = state_variables_old['e_strain_33'] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize state update failure flag is_su_fail = torch.tensor(False, device=self._device) # Initialize plastic step flag is_plast = torch.tensor(False, device=self._device) # Initialize return-mapping to apex flag is_apex_return = torch.tensor(False, device=self._device) # # 2D > 3D conversion # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # When the problem type corresponds to a 2D analysis, perform the state # update and consistent tangent computation as in the 3D case, # considering the appropriate out-of-plain strain and stress components if self._problem_type == 4: n_dim = self._n_dim comp_order_sym = self._comp_order_sym else: # Set 3D problem parameters n_dim, comp_order_sym, _ = get_problem_type_parameters(4) # Build strain tensors (matricial form) by including the # appropriate out-of-plain components inc_strain_mf = vget_state_3Dmf_from_2Dmf( inc_strain_mf, comp_33=0.0, device=self._device) e_strain_old_mf = vget_state_3Dmf_from_2Dmf( e_strain_old_mf, e_strain_33_old, device=self._device) # Get number of components n_comps = len(comp_order_sym) # # State update # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set required second-order and fourth-order tensors soid, _, _, fosym, fodiagtrace, _, fodevprojsym = \ get_id_operators(n_dim, device=self._device) soid_mf = vget_tensor_mf(soid, n_dim, comp_order_sym, device=self._device) fodevprojsym_mf = vget_tensor_mf(fodevprojsym, n_dim, comp_order_sym, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute elastic trial strain e_trial_strain_mf = e_strain_old_mf + inc_strain_mf # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute elastic consistent tangent modulus according to problem type # and store it in matricial form if self._problem_type in [1, 4]: e_consistent_tangent = lam*fodiagtrace + 2.0*miu*fosym e_consistent_tangent_mf = vget_tensor_mf(e_consistent_tangent, n_dim, comp_order_sym, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute trial stress trial_stress_mf = torch.matmul(e_consistent_tangent_mf, e_trial_strain_mf) # Compute trial pressure trial_pressure = \ (1.0/3.0)*torch.trace(vget_tensor_from_mf(trial_stress_mf, n_dim, comp_order_sym, device=self._device)) # Compute deviatoric trial stress dev_trial_stress_mf = torch.matmul(fodevprojsym_mf, trial_stress_mf) # Compute second invariant of deviatoric trial stress j2_dev_trial_stress = 0.5*torch.norm(dev_trial_stress_mf)**2 # Compute trial accumulated plastic strain acc_p_trial_strain = acc_p_strain_old # Compute trial cohesion trial_cohesion, _ = \ hardening_law(hardening_parameters, acc_p_trial_strain) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute yield function yield_function = (torch.sqrt(j2_dev_trial_stress) + etay*trial_pressure - xi*trial_cohesion) # Set plastic consistency condition plastic_consistency_cond = yield_function/torch.abs(trial_cohesion) \ *torch.ones(2*n_comps + 5, device=self._device) \ <= su_conv_tol # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # If the trial stress state lies inside the Druger-Prager yield # function, then the state update is purely elastic and coincident with # the elastic trial state. Otherwise, the state update is elastoplastic # and the return-mapping system of nonlinear equations must be solved # in order to update the state variables # # Perform elastic step elastic_step_output = self._elastic_step( e_trial_strain_mf, trial_stress_mf, acc_p_strain_old) # Perform plastic step is_elastic_step = (yield_function/abs(trial_cohesion)) <= su_conv_tol plastic_step_output = self._plastic_step( is_elastic_step, e_trial_strain_mf, trial_pressure, dev_trial_stress_mf, j2_dev_trial_stress, acc_p_strain_old, G, K, xi, etay, etaf, alpha, beta, hardening_law, hardening_parameters, soid_mf, su_conv_tol, su_max_n_iterations, small) # Pick elastic or plastic step according with plastic consistency # condition step_output = torch.where(plastic_consistency_cond, elastic_step_output, plastic_step_output) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Unpack state updated variables e_strain_mf = step_output[:n_comps] stress_mf = step_output[n_comps:2*n_comps] acc_p_strain = step_output[2*n_comps] inc_p_mult = step_output[2*n_comps + 1] is_su_fail = torch.logical_not( step_output[2*n_comps + 2].to(torch.bool)) is_plast = step_output[2*n_comps + 3].to(torch.bool) is_apex_return = step_output[2*n_comps + 4].to(torch.bool) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get the out-of-plane strain and stress components if self._problem_type == 1: e_strain_33 = e_strain_mf[comp_order_sym.index('33')] stress_33 = stress_mf[comp_order_sym.index('33')] # # Consistent tangent modulus # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set plastic step condition is_plast_cond = is_plast.expand(e_consistent_tangent.shape) # Set return-mapping to apex condition is_apex_return_cond = is_apex_return.expand(e_consistent_tangent.shape) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # If the state update was purely elastic, then the consistent tangent # modulus is the elastic consistent tangent modulus. Otherwise, compute # the elastoplastic consistent tangent modulus # # Compute plastic consistent tangent modulus (cone surface) _, H = hardening_law(hardening_parameters, acc_p_strain) dev_trial_e_strain = vget_tensor_from_mf( torch.matmul(fodevprojsym_mf, e_trial_strain_mf), n_dim, comp_order_sym, device=self._device) norm_div_factor = torch.where( torch.norm(dev_trial_e_strain) > small, 1.0/torch.norm(dev_trial_e_strain + small), torch.zeros(1, device=self._device)) trial_unit = norm_div_factor*dev_trial_e_strain s1 = norm_div_factor*(inc_p_mult/math.sqrt(2)) s2 = 1.0/(G + K*etay*etaf + H*xi**2) p_consistent_tangent_cone = 2.0*G*(1.0 - s1)*fodevprojsym \ + 2.0*G*(s1 - G*s2)*dyad22_1(trial_unit, trial_unit) \ - math.sqrt(2)*G*s2*K*(etay*dyad22_1(trial_unit, soid) + etaf*dyad22_1(soid, trial_unit)) \ + K*(1.0 - K*etay*etaf*s2)*dyad22_1(soid, soid) # # Compute plastic consistent tangent modulus (cone apex) p_consistent_tangent_apex = \ K*(1.0 - (K/(K + alpha*beta*H)))*dyad22_1(soid, soid) # Pick consistent tangent modulus according with plastic step condition consistent_tangent = \ torch.where(is_plast_cond, torch.where(is_apex_return_cond, p_consistent_tangent_apex, p_consistent_tangent_cone), e_consistent_tangent) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build consistent tangent modulus matricial form consistent_tangent_mf = vget_tensor_mf(consistent_tangent, n_dim, comp_order_sym, device=self._device) # # 3D > 2D Conversion # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # When the problem type corresponds to a 2D analysis, build the 2D # strain and stress tensors (matricial form) once the state update has # been performed if self._problem_type == 1: # Builds 2D strain and stress tensors (matricial form) from the # associated 3D counterparts e_trial_strain_mf = vget_state_2Dmf_from_3Dmf( e_trial_strain_mf, device=self._device) e_strain_mf = vget_state_2Dmf_from_3Dmf( e_strain_mf, device=self._device) stress_mf = vget_state_2Dmf_from_3Dmf( stress_mf, device=self._device) # # Update state variables # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize state variables dictionary state_variables = self.state_init() # Store updated state variables state_variables['e_strain_mf'] = e_strain_mf state_variables['acc_p_strain'] = acc_p_strain state_variables['strain_mf'] = e_trial_strain_mf + p_strain_old_mf state_variables['stress_mf'] = stress_mf state_variables['is_su_fail'] = is_su_fail state_variables['is_plast'] = is_plast state_variables['is_apex_return'] = is_apex_return if self._problem_type == 1: state_variables['e_strain_33'] = e_strain_33 state_variables['stress_33'] = stress_33 # # 3D > 2D Conversion # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # When the problem type corresponds to a 2D analysis, build the 2D # consistent tangent modulus (matricial form) from the 3D counterpart if self._problem_type == 1: consistent_tangent_mf = vget_state_2Dmf_from_3Dmf( consistent_tangent_mf, device=self._device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Restore floating-point precision if is_precision_conversion: # Reset default floating-point precision torch.set_default_dtype(torch.float32) # Perform floating-point precision conversion state_variables = convert_dict_to_float32(state_variables, is_inplace=True) consistent_tangent_mf = \ convert_tensor_to_float32(consistent_tangent_mf) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return state_variables, consistent_tangent_mf
# -------------------------------------------------------------------------
[docs] @classmethod def _elastic_step(cls, e_trial_strain_mf, trial_stress_mf, acc_p_strain_old): """Perform elastic step. Parameters ---------- e_trial_strain_mf : torch.Tensor(1d) Elastic trial strain (matricial form). trial_stress_mf : torch.Tensor(1d) Trial stress (matricial form). acc_p_strain_old : torch.Tensor(0d) Last convergence accumulated plastic strain. Returns ------- elastic_step_output : torch.Tensor(1d) Elastic step concatenated output data. """ # Get device from elastic trial strain device = e_trial_strain_mf.device # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update elastic strain e_strain_mf = e_trial_strain_mf # Update stress stress_mf = trial_stress_mf # Update accumulated plastic strain acc_p_strain = acc_p_strain_old # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set plastic step flag is_plast = torch.tensor([False], device=device) # Set return-mapping to apex flag is_apex_return = torch.tensor([False], device=device) # Set incremental plastic multiplier inc_p_mult = torch.tensor(0.0, device=device) # Set state update convergence flag is_converged = torch.tensor([True], device=device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build concatenated elastic step output elastic_step_output = \ torch.cat([e_strain_mf, stress_mf, acc_p_strain.view(-1), inc_p_mult.view(-1), is_converged.view(-1), is_plast.view(-1), is_apex_return.view(-1)]) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return elastic_step_output
# -------------------------------------------------------------------------
[docs] @classmethod def _plastic_step(cls, is_elastic_step, e_trial_strain_mf, trial_pressure, dev_trial_stress_mf, j2_dev_trial_stress, acc_p_strain_old, G, K, xi, etay, etaf, alpha, beta, hardening_law, hardening_parameters, soid_mf, su_conv_tol, su_max_n_iterations, small): """Perform plastic step. Parameters ---------- is_elastic_step : torch.Tensor(0d) If True, then avoid return mapping computations and compute elastic response. This flag avoids non-admissible values stemming from invalid return-mapping problem and consequent runtime errors when computing gradients with autograd. e_trial_strain_mf : torch.Tensor(1d) Elastic trial strain (matricial form). trial_pressure : torch.Tensor(0d) Trial pressure. dev_trial_stress_mf : torch.Tensor(1d) Deviatoric trial stress (matricial form). j2_dev_trial_stress : torch.Tensor(0d) Second invariant of deviatoric trial stress. acc_p_strain_old : torch.Tensor(0d) Last convergence accumulated plastic strain. G : torch.Tensor(0d) Shear modulus. K : torch.Tensor(0d) Bulk modulus. xi : torch.Tensor(0d) Yield surface cohesion parameter. etay : torch.Tensor(0d) Yield surface pressure parameter. etaf : torch.Tensor(0d) Plastic flow rule pressure parameter. alpha : torch.Tensor(0d) Ratio between yield surface cohesion parameter and yield surface pressure parameter. beta : torch.Tensor(0d) Ratio between yield surface cohesion parameter and plastic flow rule pressure parameter. hardening_law : function Hardening law. hardening_parameters : dict Hardening law parameters. soid_mf : torch.Tensor(1d) Second-order identity tensor (matricial form). su_conv_tol : float State update convergence tolerance. su_max_n_iterations : int State update maximum number of iterations. small : float Minimum threshold to handle values close or equal to zero. Returns ------- plastic_step_output : torch.Tensor(1d) Plastic step concatenated output data. """ # Get device from elastic trial strain device = e_trial_strain_mf.device # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set minimum threshold to handle values close or equal to zero small = 1e-8 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set plastic step flag is_plast = torch.tensor([True], device=device) # Set incremental plastic multiplier initial iterative guess inc_p_mult = torch.tensor(0.0, device=device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Newton-Raphson iterative loop for nr_iter in range(su_max_n_iterations + 1): # Compute initial hardening modulus cohesion, H = hardening_law(hardening_parameters, acc_p_strain_old + xi*inc_p_mult) # Compute return-mapping residual (cone surface) residual = (torch.sqrt(j2_dev_trial_stress) - G*inc_p_mult + etay*(trial_pressure - K*etaf*inc_p_mult) - xi*cohesion) # Compute residual convergence norm conv_norm_residual = \ torch.where(torch.abs(cohesion) < small, torch.abs(residual), torch.abs(residual/cohesion)) # Compute converge condition conv_cond = torch.all( torch.stack((conv_norm_residual < su_conv_tol, torch.tensor(nr_iter > 0, dtype=torch.bool, device=device)))) # Check Newton-Raphson iterative procedure convergence is_converged = torch.where(is_elastic_step, is_elastic_step, conv_cond) # Compute iterative incremental plastic multiplier inc_p_mult = torch.where(is_converged, inc_p_mult, cls._nr_iteration_surface( inc_p_mult, residual, G, K, etaf, etay, xi, H)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set return-mapping to apex flag is_apex_return = torch.where( is_converged, (torch.sqrt(j2_dev_trial_stress) - G*inc_p_mult) < 0, is_converged) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set incremental plastic multiplier to NaN if state update fails inc_p_mult = torch.where(is_converged, inc_p_mult, torch.tensor(torch.nan)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute pressure pressure = trial_pressure - K*etaf*inc_p_mult # Compute deviatoric trial stress second invariant factor safe_sqrt = torch.sqrt(torch.clamp(j2_dev_trial_stress, min=small)) dev_stress_factor = (1.0 - ((G*inc_p_mult)/safe_sqrt)) dev_stress_factor = torch.where( torch.isfinite(dev_stress_factor), dev_stress_factor, torch.zeros(1, device=device)) # Compute deviatoric stress dev_stress_mf = dev_stress_factor*dev_trial_stress_mf # Update stress stress_mf = pressure*soid_mf + dev_stress_mf # Update accumulated plastic strain acc_p_strain = acc_p_strain_old + xi*inc_p_mult # Update elastic strain e_strain_mf = \ (1.0/(3.0*K))*pressure*soid_mf + (1.0/(2.0*G))*dev_stress_mf # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build concatenated plastic step output (cone surface) plastic_step_cone_output = \ torch.cat([e_strain_mf, stress_mf, acc_p_strain.view(-1), inc_p_mult.view(-1), is_converged.view(-1)]) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Perform plastic step (cone apex) is_elastic_step = torch.logical_or( is_elastic_step, torch.logical_not(is_apex_return)) plastic_step_apex_output = cls._plastic_step_apex( is_elastic_step, e_trial_strain_mf, trial_pressure, dev_trial_stress_mf, acc_p_strain_old, G, K, alpha, beta, H, hardening_law, hardening_parameters, soid_mf, su_conv_tol, su_max_n_iterations, small) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set return-mapping validity cone_surface_cond = torch.logical_not(is_apex_return).expand( plastic_step_cone_output.shape) # Pick surface or apex plastic step according with condition plastic_step_output = torch.where(cone_surface_cond, plastic_step_cone_output, plastic_step_apex_output) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build concatenated plastic step output plastic_step_output = \ torch.cat([plastic_step_output, is_plast.view(-1), is_apex_return.view(-1)]) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return plastic_step_output
# -------------------------------------------------------------------------
[docs] @classmethod def _nr_iteration_surface(cls, inc_p_mult, residual, G, K, etaf, etay, xi, H): """Newton-Raphson iteration (return-mapping to cone surface). Parameters ---------- inc_p_mult : torch.Tensor(0d) Incremental plastic multiplier. residual : torch.Tensor(0d) Residual. G : torch.Tensor(0d) Shear modulus. K : torch.Tensor(0d) Bulk modulus. xi : torch.Tensor(0d) Yield surface cohesion parameter. etay : torch.Tensor(0d) Yield surface pressure parameter. etaf : torch.Tensor(0d) Plastic flow rule pressure parameter. H : torch.Tensor(0d) Hardening modulus. Return ------ inc_p_mult : torch.Tensor(0d) Incremental plastic multiplier. """ # Compute return-mapping Jacobian (scalar) jacobian = -G - K*etaf*etay - (xi**2)*H # Solve return-mapping linearized equation d_iter = -residual/jacobian # Update incremental plastic multiplier inc_p_mult = inc_p_mult + d_iter # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return inc_p_mult
# -------------------------------------------------------------------------
[docs] @classmethod def _plastic_step_apex(cls, is_elastic_step, e_trial_strain_mf, trial_pressure, dev_trial_stress_mf, acc_p_strain_old, G, K, alpha, beta, H, hardening_law, hardening_parameters, soid_mf, su_conv_tol, su_max_n_iterations, small): """Perform plastic step (return-mapping to cone apex). Parameters ---------- is_elastic_step : torch.Tensor(0d) If True, then avoid return mapping computations and compute elastic response. This flag avoids non-admissible values stemming from invalid return-mapping problem and consequent runtime errors when computing gradients with autograd. e_trial_strain_mf : torch.Tensor(1d) Elastic trial strain (matricial form). trial_pressure : torch.Tensor(0d) Trial pressure. dev_trial_stress_mf : torch.Tensor(1d) Deviatoric trial stress (matricial form). acc_p_strain_old : torch.Tensor(0d) Last convergence accumulated plastic strain. G : torch.Tensor(0d) Shear modulus. K : torch.Tensor(0d) Bulk modulus. alpha : torch.Tensor(0d) Ratio between yield surface cohesion parameter and yield surface pressure parameter. beta : torch.Tensor(0d) Ratio between yield surface cohesion parameter and plastic flow rule pressure parameter. H : torch.Tensor(0d) Hardening modulus. hardening_law : function Hardening law. hardening_parameters : dict Hardening law parameters. soid_mf : torch.Tensor(1d) Second-order identity tensor (matricial form). su_conv_tol : float State update convergence tolerance. su_max_n_iterations : int State update maximum number of iterations. small : float Minimum threshold to handle values close or equal to zero. Returns ------- plastic_step_output : torch.Tensor(1d) Plastic step concatenated output data. """ # Get device from elastic trial strain device = e_trial_strain_mf.device # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set incremental plastic multiplier inc_p_mult = torch.tensor(0.0, device=device) # Set incremental plastic volumetric strain initial iterative guess inc_vol_p_strain = torch.tensor(0.0, device=device) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Newton-Raphson iterative loop for nr_iter in range(su_max_n_iterations + 1): # Compute current cohesion and hardening modulus cohesion, H = hardening_law( hardening_parameters, acc_p_strain_old + alpha*inc_vol_p_strain) # Compute return-mapping residual (cone apex) residual = cohesion*beta - (trial_pressure - K*inc_vol_p_strain) # Compute residual convergence norm conv_norm_residual = \ torch.where(torch.abs(cohesion) < small, torch.abs(residual), torch.abs(residual/cohesion)) # Compute converge condition conv_cond = torch.all( torch.stack((conv_norm_residual < su_conv_tol, torch.tensor(nr_iter > 0, dtype=torch.bool, device=device)))) # Check Newton-Raphson iterative procedure convergence is_converged = torch.where(is_elastic_step, is_elastic_step, conv_cond) # Compute iterative incremental plastic volumetric strain inc_vol_p_strain = torch.where(is_converged, inc_vol_p_strain, cls._nr_iteration_apex( inc_vol_p_strain, residual, alpha, beta, K, H)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Set incremental plastic volumetric strain to NaN if state update # fails inc_vol_p_strain = torch.where(is_converged, inc_vol_p_strain, torch.tensor(torch.nan)) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute pressure pressure = trial_pressure - K*inc_vol_p_strain # Compute deviatoric stress dev_stress_mf = torch.zeros_like(dev_trial_stress_mf, device=device) # Update stress stress_mf = pressure*soid_mf # Update accumulated plastic strain acc_p_strain = acc_p_strain_old + alpha*inc_vol_p_strain # Update elastic strain e_strain_mf = \ (1.0/(3.0*K))*pressure*soid_mf + (1.0/(2.0*G))*dev_stress_mf # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Build concatenated plastic step output plastic_step_output = \ torch.cat([e_strain_mf, stress_mf, acc_p_strain.view(-1), inc_p_mult.view(-1), is_converged.view(-1)]) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return plastic_step_output
# -------------------------------------------------------------------------
[docs] @classmethod def _nr_iteration_apex(cls, inc_vol_p_strain, residual, alpha, beta, K, H): """Newton-Raphson iteration (return-mapping to cone apex). Parameters ---------- inc_vol_p_strain : torch.Tensor(0d) Incremental plastic volumetric strain. residual : torch.Tensor(0d) Residual. alpha : torch.Tensor(0d) Ratio between yield surface cohesion parameter and yield surface pressure parameter. beta : torch.Tensor(0d) Ratio between yield surface cohesion parameter and plastic flow rule pressure parameter. K : torch.Tensor(0d) Bulk modulus. Plastic flow rule pressure parameter. H : torch.Tensor(0d) Hardening modulus. Return ------ inc_vol_p_strain : torch.Tensor(0d) Incremental plastic volumetric strain. """ # Compute return-mapping Jacobian (scalar) jacobian = alpha*beta*H + K # Solve return-mapping linearized equation d_iter = -residual/jacobian # Update incremental plastic multiplier inc_vol_p_strain = inc_vol_p_strain + d_iter # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return inc_vol_p_strain