graphorge.gnn_base_model.model.gnn_model.GNNEPDBaseModel¶
- class GNNEPDBaseModel(n_node_in, n_node_out, n_edge_in, n_edge_out, n_global_in, n_global_out, n_message_steps, enc_n_hidden_layers, pro_n_hidden_layers, dec_n_hidden_layers, hidden_layer_size, model_directory, model_name='gnn_epd_model', n_time_node=0, n_time_edge=0, n_time_global=0, is_model_in_normalized=False, is_model_out_normalized=False, pro_edge_to_node_aggr='add', pro_node_to_global_aggr='add', enc_node_hidden_activ_type='identity', enc_node_output_activ_type='identity', enc_edge_hidden_activ_type='identity', enc_edge_output_activ_type='identity', enc_global_hidden_activ_type='identity', enc_global_output_activ_type='identity', pro_node_hidden_activ_type='identity', pro_node_output_activ_type='identity', pro_edge_hidden_activ_type='identity', pro_edge_output_activ_type='identity', pro_global_hidden_activ_type='identity', pro_global_output_activ_type='identity', dec_node_hidden_activ_type='identity', dec_node_output_activ_type='identity', dec_edge_hidden_activ_type='identity', dec_edge_output_activ_type='identity', dec_global_hidden_activ_type='identity', dec_global_output_activ_type='identity', is_save_model_init_file=True, device_type='cpu')[source]¶
Bases:
Module
GNN Encoder-Processor-Decoder base model.
- _n_time_node¶
Number of discrete time steps of nodal features. If greater than 0, then nodal input features include a time dimension and message passing layers are RNNs.
- Type:
- _n_time_edge¶
Number of discrete time steps of edge features. If greater than 0, then edge input features include a time dimension and message passing layers are RNNs.
- Type:
- _n_time_global¶
Number of discrete time steps of global features. If greater than 0, then global input features include a time dimension and message passing layers are RNNs.
- Type:
Encoder: Number of hidden layers of multilayer feed-forward neural network update functions.
- Type:
Processor: Number of hidden layers of multilayer feed-forward neural network update functions.
- Type:
Decoder: Number of hidden layers of multilayer feed-forward neural network update functions.
- Type:
Number of neurons of hidden layers of multilayer feed-forward neural network update functions.
- Type:
- _pro_edge_to_node_aggr¶
Processor: Edge-to-node aggregation scheme.
- Type:
{‘add’,}, default=’add’
- _pro_node_to_global_aggr¶
Processor: Node-to-global aggregation scheme.
- Type:
{‘add’,}, default=’add’
Encoder: Hidden unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
- _enc_node_output_activ_type¶
Encoder: Output unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
Encoder: Hidden unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
- _enc_edge_output_activ_type¶
Encoder: Output unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
Encoder: Hidden unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
- _enc_global_output_activ_type¶
Encoder: Output unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
Processor: Hidden unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
- _pro_node_output_activ_type¶
Processor: Output unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
Processor: Hidden unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
- _pro_edge_output_activ_type¶
Processor: Output unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
Processor: Hidden unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
- _pro_global_output_activ_type¶
Processor: Output unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
Decoder: Hidden unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
- _dec_node_output_activ_type¶
Decoder: Output unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
Decoder: Hidden unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
- _dec_edge_output_activ_type¶
Decoder: Output unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
Decoder: Hidden unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
- _dec_global_output_activ_type¶
Decoder: Output unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
- Type:
str, default=’identity’
- _gnn_epd_model¶
GNN-based Encoder-Process-Decoder model.
- Type:
- _device_type¶
Type of device on which torch.Tensor is allocated.
- Type:
{‘cpu’, ‘cuda’}, default=’cpu’
- _device¶
Device on which torch.Tensor is allocated.
- Type:
torch.device
- is_model_in_normalized¶
If True, then model input features are assumed to be normalized (normalized input data has been seen during model training).
- Type:
bool, default=False
- is_model_out_normalized¶
If True, then model output features are assumed to be normalized (normalized output data has been seen during model training).
- Type:
bool, default=False
- _data_scalers¶
Data scaler (item, sklearn.preprocessing.StandardScaler) for each feature data (key, str).
- Type:
- _available_activ_fn¶
For each available activation function type (key, str), store the corresponding PyTorch unit activation function (item, torch.nn.Module).
- Type:
- forward(self, node_features_in=None, edge_features_in=None, global_features_in=None, edges_indexes=None, batch_vector=None)[source]¶
Forward propagation.
- get_input_features_from_graph(self, graph, is_normalized=False)[source]¶
Get input features from graph.
- get_output_features_from_graph(self, graph, is_normalized=False)[source]¶
Get output features from graph.
- _check_best_state_file(self, filename)[source]¶
Check if file is model training epoch best state file.
- _remove_posterior_state_files(self, epoch)[source]¶
Delete model training epoch state files posterior to given epoch.
- set_data_scalers(self, scaler_node_in, scaler_edge_in, scaler_global_in,
scaler_node_out, scaler_edge_out, scaler_global_out)
Set fitted model data scalers.
Constructor.
- Parameters:
n_node_in (int) – Number of node input features.
n_node_out (int) – Number of node output features.
n_edge_in (int) – Number of edge input features.
n_edge_out (int) – Number of edge output features.
n_global_in (int) – Number of global input features.
n_global_out (int) – Number of global output features.
n_message_steps (int) – Number of message-passing steps.
enc_n_hidden_layers (int) – Encoder: Number of hidden layers of multilayer feed-forward neural network update functions.
pro_n_hidden_layers (int) – Processor: Number of hidden layers of multilayer feed-forward neural network update functions.
dec_n_hidden_layers (int) – Decoder: Number of hidden layers of multilayer feed-forward neural network update functions.
hidden_layer_size (int) – Number of neurons of hidden layers of multilayer feed-forward neural network update functions.
model_directory (str) – Directory where model is stored.
model_name (str, default='gnn_epd_model') – Name of model.
n_time_node (int, default=0) – Number of discrete time steps of nodal features. If greater than 0, then nodal input features include a time dimension and message passing layers are RNNs.
n_time_edge (int, default=0) – Number of discrete time steps of edge features. If greater than 0, then edge input features include a time dimension and message passing layers are RNNs.
n_time_global (int, default=0) – Number of discrete time steps of global features. If greater than 0, then global input features include a time dimension and message passing layers are RNNs.
is_model_in_normalized (bool, default=False) – If True, then model input features are assumed to be normalized (normalized input data has been seen during model training).
is_model_out_normalized (bool, default=False) – If True, then model output features are assumed to be normalized (normalized output data has been seen during model training).
pro_edge_to_node_aggr ({'add',}, default='add') – Processor: Edge-to-node aggregation scheme.
pro_node_to_global_aggr ({'add',}, default='add') – Processor: Node-to-global aggregation scheme.
enc_node_hidden_activ_type (str, default='identity') – Encoder: Hidden unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
enc_node_output_activ_type (str, default='identity') – Encoder: Output unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
enc_edge_hidden_activ_type (str, default='identity') – Encoder: Hidden unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
enc_edge_output_activ_type (str, default='identity') – Encoder: Output unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
enc_global_hidden_activ_type (str, default='identity') – Encoder: Hidden unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
enc_global_output_activ_type (str, default='identity') – Encoder: Output unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
pro_node_hidden_activ_type (str, default='identity') – Processor: Hidden unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
pro_node_output_activ_type (str, default='identity') – Processor: Output unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
pro_edge_hidden_activ_type (str, default='identity') – Processor: Hidden unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
pro_edge_output_activ_type (str, default='identity') – Processor: Output unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
pro_global_hidden_activ_type (str, default='identity') – Processor: Hidden unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
pro_global_output_activ_type (str, default='identity') – Processor: Output unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
dec_node_hidden_activ_type (str, default='identity') – Decoder: Hidden unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
dec_node_output_activ_type (str, default='identity') – Decoder: Output unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
dec_edge_hidden_activ_type (str, default='identity') – Decoder: Hidden unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
dec_edge_output_activ_type (str, default='identity') – Decoder: Output unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
dec_global_hidden_activ_type (str, default='identity') – Decoder: Hidden unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
dec_global_output_activ_type (str, default='identity') – Decoder: Output unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
is_save_model_init_file (bool, default=True) – If True, saves model initialization file when model is initialized (overwritting existent initialization file), False otherwise. When initializing model from initialization file this option should be set to False to avoid updating the initialization file and preserve fitted data scalers.
device_type ({'cpu', 'cuda'}, default='cpu') – Type of device on which torch.Tensor is allocated.
List of Public Methods
Add a child module to the current module.
Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.Casts all floating point parameters and buffers to
bfloat16
datatype.Return an iterator over module buffers.
Check if model data normalization is available.
Return an iterator over immediate children modules.
Compile this Module's forward using
torch.compile()
.Move all model parameters and buffers to the CPU.
Move all model parameters and buffers to the GPU.
Perform data scaling operation on features PyTorch tensor.
Casts all floating point parameters and buffers to
double
datatype.Set the module in evaluation mode.
Set the extra representation of the module.
Fit model data scalers.
Casts all floating point parameters and buffers to
float
datatype.Forward propagation.
Return the buffer given by
target
if it exists, otherwise throw an error.Get device on which torch.Tensor is allocated.
Return any extra state to include in the module's state_dict.
Get fitted model data scalers.
Get input features from graph.
Get metadata from graph.
Get output features from graph.
Return the parameter given by
target
if it exists, otherwise throw an error.Get PyTorch unit activation function.
Return the submodule given by
target
if it exists, otherwise throw an error.Casts all floating point parameters and buffers to
half
datatype.Initialize model from initialization file.
Move all model parameters and buffers to the IPU.
Load data scalers from model initialization file.
Load model state from file.
Copy parameters and buffers from
state_dict
into this module and its descendants.Return an iterator over all modules in the network.
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Return an iterator over module parameters.
Predict output features.
Register a backward hook on the module.
Add a buffer to the module.
Register a forward hook on the module.
Register a forward pre-hook on the module.
Register a backward hook on the module.
Register a backward pre-hook on the module.
Register a post hook to be run after module's
load_state_dict
is called.Alias for
add_module()
.Add a parameter to the module.
Register a pre-hook for the
state_dict()
method.Change if autograd should record operations on parameters in this module.
Save model initialization file.
Save model initial state to file.
Save model state to file.
Set fitted model data scalers.
Set device on which torch.Tensor is allocated.
Set extra state contained in the loaded state_dict.
See
torch.Tensor.share_memory_()
.Return a dictionary containing references to the whole state of the module.
Move and/or cast the parameters and buffers.
Move the parameters and buffers to the specified device without copying storage.
Set the module in training mode.
Casts all parameters and buffers to
dst_type
.Move all model parameters and buffers to the XPU.
Reset gradients of all model parameters.
Attributes
T_destination
call_super_init
dump_patches
training
Methods
- __call__(*args, **kwargs)¶
Call self as a function.
- __init__(n_node_in, n_node_out, n_edge_in, n_edge_out, n_global_in, n_global_out, n_message_steps, enc_n_hidden_layers, pro_n_hidden_layers, dec_n_hidden_layers, hidden_layer_size, model_directory, model_name='gnn_epd_model', n_time_node=0, n_time_edge=0, n_time_global=0, is_model_in_normalized=False, is_model_out_normalized=False, pro_edge_to_node_aggr='add', pro_node_to_global_aggr='add', enc_node_hidden_activ_type='identity', enc_node_output_activ_type='identity', enc_edge_hidden_activ_type='identity', enc_edge_output_activ_type='identity', enc_global_hidden_activ_type='identity', enc_global_output_activ_type='identity', pro_node_hidden_activ_type='identity', pro_node_output_activ_type='identity', pro_edge_hidden_activ_type='identity', pro_edge_output_activ_type='identity', pro_global_hidden_activ_type='identity', pro_global_output_activ_type='identity', dec_node_hidden_activ_type='identity', dec_node_output_activ_type='identity', dec_edge_hidden_activ_type='identity', dec_edge_output_activ_type='identity', dec_global_hidden_activ_type='identity', dec_global_output_activ_type='identity', is_save_model_init_file=True, device_type='cpu')[source]¶
Constructor.
- Parameters:
n_node_in (int) – Number of node input features.
n_node_out (int) – Number of node output features.
n_edge_in (int) – Number of edge input features.
n_edge_out (int) – Number of edge output features.
n_global_in (int) – Number of global input features.
n_global_out (int) – Number of global output features.
n_message_steps (int) – Number of message-passing steps.
enc_n_hidden_layers (int) – Encoder: Number of hidden layers of multilayer feed-forward neural network update functions.
pro_n_hidden_layers (int) – Processor: Number of hidden layers of multilayer feed-forward neural network update functions.
dec_n_hidden_layers (int) – Decoder: Number of hidden layers of multilayer feed-forward neural network update functions.
hidden_layer_size (int) – Number of neurons of hidden layers of multilayer feed-forward neural network update functions.
model_directory (str) – Directory where model is stored.
model_name (str, default='gnn_epd_model') – Name of model.
n_time_node (int, default=0) – Number of discrete time steps of nodal features. If greater than 0, then nodal input features include a time dimension and message passing layers are RNNs.
n_time_edge (int, default=0) – Number of discrete time steps of edge features. If greater than 0, then edge input features include a time dimension and message passing layers are RNNs.
n_time_global (int, default=0) – Number of discrete time steps of global features. If greater than 0, then global input features include a time dimension and message passing layers are RNNs.
is_model_in_normalized (bool, default=False) – If True, then model input features are assumed to be normalized (normalized input data has been seen during model training).
is_model_out_normalized (bool, default=False) – If True, then model output features are assumed to be normalized (normalized output data has been seen during model training).
pro_edge_to_node_aggr ({'add',}, default='add') – Processor: Edge-to-node aggregation scheme.
pro_node_to_global_aggr ({'add',}, default='add') – Processor: Node-to-global aggregation scheme.
enc_node_hidden_activ_type (str, default='identity') – Encoder: Hidden unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
enc_node_output_activ_type (str, default='identity') – Encoder: Output unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
enc_edge_hidden_activ_type (str, default='identity') – Encoder: Hidden unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
enc_edge_output_activ_type (str, default='identity') – Encoder: Output unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
enc_global_hidden_activ_type (str, default='identity') – Encoder: Hidden unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
enc_global_output_activ_type (str, default='identity') – Encoder: Output unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
pro_node_hidden_activ_type (str, default='identity') – Processor: Hidden unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
pro_node_output_activ_type (str, default='identity') – Processor: Output unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
pro_edge_hidden_activ_type (str, default='identity') – Processor: Hidden unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
pro_edge_output_activ_type (str, default='identity') – Processor: Output unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
pro_global_hidden_activ_type (str, default='identity') – Processor: Hidden unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
pro_global_output_activ_type (str, default='identity') – Processor: Output unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
dec_node_hidden_activ_type (str, default='identity') – Decoder: Hidden unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
dec_node_output_activ_type (str, default='identity') – Decoder: Output unit activation function type of node update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
dec_edge_hidden_activ_type (str, default='identity') – Decoder: Hidden unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
dec_edge_output_activ_type (str, default='identity') – Decoder: Output unit activation function type of edge update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
dec_global_hidden_activ_type (str, default='identity') – Decoder: Hidden unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
dec_global_output_activ_type (str, default='identity') – Decoder: Output unit activation function type of global update function (multilayer feed-forward neural network). Defaults to identity (linear) unit activation function.
is_save_model_init_file (bool, default=True) – If True, saves model initialization file when model is initialized (overwritting existent initialization file), False otherwise. When initializing model from initialization file this option should be set to False to avoid updating the initialization file and preserve fitted data scalers.
device_type ({'cpu', 'cuda'}, default='cpu') – Type of device on which torch.Tensor is allocated.
- _check_best_state_file(filename)[source]¶
Check if file is model best state file.
Model state file corresponding to the best performance is stored in model_directory under the name < model_name >-best.pt. or < model_name >-< epoch >-best.pt if the training epoch is known.
- Parameters:
filename (str) – File name.
- Returns:
is_best_state_file (bool) – True if model training epoch state file, False otherwise.
epoch ({None, int}) – Training epoch corresponding to model state file if is_best_state_file=True and training epoch is known, None otherwise.
- _check_state_file(filename)[source]¶
Check if file is model training epoch state file.
Model training epoch state file is stored in model_directory under the name < model_name >-< epoch >.pt.
- Parameters:
filename (str) – File name.
- Returns:
is_state_file (bool) – True if model training epoch state file, False otherwise.
epoch ({None, int}) – Training epoch corresponding to model state file if is_state_file=True, None otherwise.
- _get_backward_hooks()¶
Return the backward hooks for use in the call function.
It returns two lists, one with the full backward hooks and one with the non-full backward hooks.
- _load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)¶
Copy parameters and buffers from
state_dict
into only this module, but not its descendants.This is called on every submodule in
load_state_dict()
. Metadata saved for this module in inputstate_dict
is provided aslocal_metadata
. For state dicts without metadata,local_metadata
is empty. Subclasses can achieve class-specific backward compatible loading using the version number at local_metadata.get(“version”, None). Additionally,local_metadata
can also contain the key assign_to_params_buffers that indicates whether keys should be assigned their corresponding tensor in the state_dict.Note
state_dict
is not the same object as the inputstate_dict
toload_state_dict()
. So it can be modified.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
prefix (str) – the prefix for parameters and buffers used in this module
local_metadata (dict) – a dict containing the metadata for this module. See
strict (bool) – whether to strictly enforce that the keys in
state_dict
withprefix
match the names of parameters and buffers in this modulemissing_keys (list of str) – if
strict=True
, add missing keys to this listunexpected_keys (list of str) – if
strict=True
, add unexpected keys to this listerror_msgs (list of str) – error messages should be added to this list, and will be reported together in
load_state_dict()
- _named_members(get_members_fn, prefix='', recurse=True, remove_duplicate=True)¶
Help yield various names + members of modules.
- _register_load_state_dict_pre_hook(hook, with_module=False)¶
Register a pre-hook for the
load_state_dict()
method.These hooks will be called with arguments: state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, before loading state_dict into self. These arguments are exactly the same as those of _load_from_state_dict.
If
with_module
isTrue
, then the first argument to the hook is an instance of the module.- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
with_module (bool, optional) – Whether or not to pass the module instance to the hook as the first parameter.
- _register_state_dict_hook(hook)¶
Register a state-dict hook.
These hooks will be called with arguments: self, state_dict, prefix, local_metadata, after the state_dict of self is set. Note that only parameters and buffers of self or its children are guaranteed to exist in state_dict. The hooks may modify state_dict inplace or return a new one.
- _remove_posterior_state_files(epoch)[source]¶
Delete model training epoch state files posterior to given epoch.
- Parameters:
epoch (int) – Training epoch.
- _save_to_state_dict(destination, prefix, keep_vars)¶
Save module state to the destination dictionary.
The destination dictionary will contain the state of the module, but not its descendants. This is called on every submodule in
state_dict()
.In rare cases, subclasses can achieve class-specific behavior by overriding this method with custom logic.
- _version: int = 1¶
This allows better BC support for
load_state_dict()
. Instate_dict()
, the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See_load_from_state_dict
on how to use this information in loading.If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.
- add_module(name, module)¶
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
- apply(fn)¶
Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.Typical use includes initializing the parameters of a model (see also nn-init-doc).
- Parameters:
fn (
Module
-> None) – function to be applied to each submodule- Returns:
self
- Return type:
Module
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16()¶
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- buffers(recurse=True)¶
Return an iterator over module buffers.
- Parameters:
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields:
torch.Tensor – module buffer
- Return type:
Iterator
[Tensor
]
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- children()¶
Return an iterator over immediate children modules.
- Yields:
Module – a child module
- Return type:
Iterator
[Module
]
- compile(*args, **kwargs)¶
Compile this Module’s forward using
torch.compile()
.This Module’s __call__ method is compiled and all arguments are passed as-is to
torch.compile()
.See
torch.compile()
for details on the arguments for this function.
- cpu()¶
Move all model parameters and buffers to the CPU.
Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- cuda(device=None)¶
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- data_scaler_transform(tensor, features_type, mode='normalize')[source]¶
Perform data scaling operation on features PyTorch tensor.
- Parameters:
tensor (torch.Tensor) – Features PyTorch tensor.
features_type (str) –
Features for which data scaler is required:
’node_features_in’ : Node features input matrix
’edge_features_in’ : Edge features input matrix
’global_features_in’ : Global features input matrix
’node_features_out’ : Node features output matrix
’edge_features_out’ : Edge features output matrix
’global_features_out’ : Global features output matrix
mode ({'normalize', 'denormalize'}, default=normalize) – Data scaling transformation type.
- Returns:
transformed_tensor – Transformed features PyTorch tensor.
- Return type:
torch.Tensor
- double()¶
Casts all floating point parameters and buffers to
double
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- eval()¶
Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns:
self
- Return type:
Module
- extra_repr()¶
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- Return type:
- fit_data_scalers(dataset, is_verbose=False, tqdm_flavor='default')[source]¶
Fit model data scalers.
Data scalars are set a standard scalers where features are normalized by removing the mean and scaling to unit variance.
Calling this method turns on model data normalization.
- Parameters:
dataset (torch.utils.data.Dataset) – GNN-based data set. Each sample corresponds to a torch_geometric.data.Data object describing a homogeneous graph.
is_verbose (bool, default=False) – If True, enable verbose output.
tqdm_flavor ({'default', 'notebook'}, default='default') – Type of tqdm progress bar to use when is_verbose=True.
- float()¶
Casts all floating point parameters and buffers to
float
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- forward(node_features_in=None, edge_features_in=None, global_features_in=None, edges_indexes=None, batch_vector=None)[source]¶
Forward propagation.
- Parameters:
node_features_in ({torch.Tensor, None}, default=None) – Nodes features input matrix stored as a torch.Tensor(2d) of shape (n_nodes, n_features).
edge_features_in ({torch.Tensor, None}, default=None) – Edges features input matrix stored as a torch.Tensor(2d) of shape (n_edges, n_features).
global_features_in ({torch.Tensor, None}, default=None) – Global features input matrix stored as a torch.Tensor(2d) of shape (1, n_features).
edges_indexes ({torch.Tensor, None}, default=None) – Edges indexes matrix stored as torch.Tensor(2d) with shape (2, n_edges), where the i-th global is stored in edges_indexes[:, i] as (start_node_index, end_node_index).
batch_vector (torch.Tensor, default=None) – Batch vector stored as torch.Tensor(1d) of shape (n_nodes,), assigning each node to a specific batch subgraph. Required to process a graph holding multiple isolated subgraphs when batch size is greater than 1.
- Returns:
node_features_out ({torch.Tensor, None}) – Nodes features output matrix stored as a torch.Tensor(2d) of shape (n_nodes, n_features).
edge_features_out ({torch.Tensor, None}) – Edges features output matrix stored as a torch.Tensor(2d) of shape (n_edges, n_features).
global_features_out ({torch.Tensor, None}) – Global features output matrix stored as a torch.Tensor(2d) of shape (1, n_features).
- get_buffer(target)¶
Return the buffer given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target (
str
) – The fully-qualified string name of the buffer to look for. (Seeget_submodule
for how to specify a fully-qualified string.)- Returns:
The buffer referenced by
target
- Return type:
torch.Tensor
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_device()[source]¶
Get device on which torch.Tensor is allocated.
- Parameters:
device_type ({'cpu', 'cuda'}) – Type of device on which torch.Tensor is allocated.
device (torch.device) – Device on which torch.Tensor is allocated.
- get_extra_state()¶
Return any extra state to include in the module’s state_dict.
Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns:
Any extra state to store in the module’s state_dict
- Return type:
- get_fitted_data_scaler(features_type)[source]¶
Get fitted model data scalers.
- Parameters:
features_type (str) –
Features for which data scaler is required:
’node_features_in’ : Node features input matrix
’edge_features_in’ : Edge features input matrix
’global_features_in’ : Global features input matrix
’node_features_out’ : Node features output matrix
’edge_features_out’ : Edge features output matrix
’global_features_out’ : Global features output matrix
- Returns:
data_scaler – Fitted data scaler.
- Return type:
sklearn.preprocessing.StandardScaler
- get_input_features_from_graph(graph, is_normalized=False)[source]¶
Get input features from graph.
- Parameters:
graph (torch_geometric.data.Data) – Homogeneous graph.
is_normalized (bool, default=False) – If True, get normalized input features from graph, False otherwise.
- Returns:
node_features_in ({torch.Tensor, None}) – Nodes features input matrix stored as a torch.Tensor(2d) of shape (n_nodes, n_features).
edge_features_in ({torch.Tensor, None}) – Edges features input matrix stored as a torch.Tensor(2d) of shape (n_edges, n_features).
global_features_in ({torch.Tensor, None}) – Global features input matrix stored as a torch.Tensor(2d) of shape (1, n_features).
edges_indexes ({torch.Tensor, None}) – Edges indexes matrix stored as torch.Tensor(2d) with shape (2, n_edges), where the i-th global is stored in edges_indexes[:, i] as (start_node_index, end_node_index).
- get_metadata_from_graph(graph)[source]¶
Get metadata from graph.
- Parameters:
graph (torch_geometric.data.Data) – Homogeneous graph.
- Returns:
metadata – Metadata dictionary.
- Return type:
- get_output_features_from_graph(graph, is_normalized=False)[source]¶
Get output features from graph.
- Parameters:
graph (torch_geometric.data.Data) – Homogeneous graph.
is_normalized (bool, default=False) – If True, get normalized output features from graph, False otherwise.
- Returns:
node_features_out ({torch.Tensor, None}) – Nodes features output matrix stored as a torch.Tensor(2d) of shape (n_nodes, n_features).
edge_features_out ({torch.Tensor, None}) – Edges features output matrix stored as a torch.Tensor(2d) of shape (n_edges, n_features).
global_features_out ({torch.Tensor, None}) – Global features output matrix stored as a torch.Tensor(2d) of shape (1, n_features).
- get_parameter(target)¶
Return the parameter given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target (
str
) – The fully-qualified string name of the Parameter to look for. (Seeget_submodule
for how to specify a fully-qualified string.)- Returns:
The Parameter referenced by
target
- Return type:
torch.nn.Parameter
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- classmethod get_pytorch_activation(activation_type, **kwargs)[source]¶
Get PyTorch unit activation function.
- Parameters:
activation_type ({'identity', 'relu', 'tanh'}) –
Unit activation function type:
’identity’ : Linear (torch.nn.Identity)
’relu’ : Rectified linear unit (torch.nn.Identity)
’tanh’ : Hyperbolic Tangent (torch.nn.Tanh)
**kwargs – Arguments of torch.nn._Module initializer.
- Returns:
activation_function – PyTorch unit activation function.
- Return type:
torch.nn._Module
- get_submodule(target)¶
Return the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters:
target (
str
) – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)- Returns:
The submodule referenced by
target
- Return type:
torch.nn.Module
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half()¶
Casts all floating point parameters and buffers to
half
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- static init_model_from_file(model_directory)[source]¶
Initialize model from initialization file.
Initialization file is assumed to be stored in the model directory under the name model_init_file.pkl.
- Parameters:
model_directory (str) – Directory where model is stored.
- ipu(device=None)¶
Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- load_model_state(load_model_state=None, is_remove_posterior=True)[source]¶
Load model state from file.
Model state file is stored in model_directory under the name < model_name >.pt or < model_name >-< epoch >.pt if epoch is known.
Model state file corresponding to the best performance is stored in model_directory under the name < model_name >-best.pt or < model_name >-< epoch >-best.pt if epoch if known.
Model initial state file is stored in model directory under the name < model_name >-init.pt
- Parameters:
load_model_state ({'best', 'last', int, None}, default=None) –
Load available GNN-based model state from the model directory. Options:
’best’ : Model state corresponding to best performance
’last’ : Model state corresponding to highest training epoch
int : Model state corresponding to given training epoch
’init’ : Model initial state
None : Model default state file
is_remove_posterior (bool, default=True) – Remove model state files corresponding to training epochs posterior to the loaded state file. Effective only if loaded training epoch is known.
- Returns:
epoch – Loaded model state training epoch. Defaults to None if training epoch is unknown.
- Return type:
- load_state_dict(state_dict, strict=True, assign=False)¶
Copy parameters and buffers from
state_dict
into this module and its descendants.If
strict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.Warning
If
assign
isTrue
the optimizer must be created after the call toload_state_dict
unlessget_swap_module_params_on_conversion()
isTrue
.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
assign (bool, optional) – When
False
, the properties of the tensors in the current module are preserved while whenTrue
, the properties of the Tensors in the state dict are preserved. The only exception is therequires_grad
field ofDefault: ``False`
- Returns:
- missing_keys is a list of str containing any keys that are expected
by this module but missing from the provided
state_dict
.
- unexpected_keys is a list of str containing the keys that are not
expected by this module but present in the provided
state_dict
.
- Return type:
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- modules()¶
Return an iterator over all modules in the network.
- Yields:
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- Return type:
Iterator
[Module
]
- named_buffers(prefix='', recurse=True, remove_duplicate=True)¶
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters:
prefix (str) – prefix to prepend to all buffer names.
recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True.
remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True.
- Yields:
(str, torch.Tensor) – Tuple containing the name and buffer
- Return type:
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children()¶
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields:
(str, Module) – Tuple containing a name and child module
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo=None, prefix='', remove_duplicate=True)¶
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters:
- Yields:
(str, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix='', recurse=True, remove_duplicate=True)¶
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters:
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True.
- Yields:
(str, Parameter) – Tuple containing the name and parameter
- Return type:
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse=True)¶
Return an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters:
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields:
Parameter – module parameter
- Return type:
Iterator
[Parameter
]
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- predict_output_features(node_features_in=None, edge_features_in=None, global_features_in=None, edges_indexes=None, batch_vector=None)[source]¶
Predict output features.
- Parameters:
node_features_in ({torch.Tensor, None}, default=None) – Nodes features input matrix stored as a torch.Tensor(2d) of shape (n_nodes, n_features).
edge_features_in ({torch.Tensor, None}, default=None) – Edges features input matrix stored as a torch.Tensor(2d) of shape (n_edges, n_features).
global_features_in ({torch.Tensor, None}, default=None) – Global features input matrix stored as a torch.Tensor(2d) of shape (1, n_features).
edges_indexes ({torch.Tensor, None}, default=None) – Edges indexes matrix stored as torch.Tensor(2d) with shape (2, n_edges), where the i-th global is stored in edges_indexes[:, i] as (start_node_index, end_node_index).
batch_vector (torch.Tensor, default=None) – Batch vector stored as torch.Tensor(1d) of shape (n_nodes,), assigning each node to a specific batch subgraph. Required to process a graph holding multiple isolated subgraphs when batch size is greater than 1.
- Returns:
node_features_out ({torch.Tensor, None}) – Nodes features output matrix stored as a torch.Tensor(2d) of shape (n_nodes, n_features).
edge_features_out ({torch.Tensor, None}) – Edges features output matrix stored as a torch.Tensor(2d) of shape (n_edges, n_features).
global_features_out ({torch.Tensor, None}) – Global features output matrix stored as a torch.Tensor(2d) of shape (1, n_features).
- register_backward_hook(hook)¶
Register a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_buffer(name, tensor, persistent=True)¶
Add a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters:
name (str) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
- Return type:
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook, *, prepend=False, with_kwargs=False, always_call=False)¶
Register a forward hook on the module.
The hook will be called every time after
forward()
has computed an output.If
with_kwargs
isFalse
or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called. The hook should have the following signature:hook(module, args, output) -> None or modified output
If
with_kwargs
isTrue
, the forward hook will be passed thekwargs
given to the forward function and be expected to return the output possibly modified. The hook should have the following signature:hook(module, args, kwargs, output) -> None or modified output
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If
True
, the providedhook
will be fired before all existingforward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward
hooks on thistorch.nn.modules.Module
. Note that globalforward
hooks registered withregister_module_forward_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If
True
, thehook
will be passed the kwargs given to the forward function. Default:False
always_call (bool) – If
True
thehook
will be run regardless of whether an exception is raised while calling the Module. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_forward_pre_hook(hook, *, prepend=False, with_kwargs=False)¶
Register a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked.If
with_kwargs
is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:hook(module, args) -> None or modified input
If
with_kwargs
is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingforward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward_pre
hooks on thistorch.nn.modules.Module
. Note that globalforward_pre
hooks registered withregister_module_forward_pre_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If true, the
hook
will be passed the kwargs given to the forward function. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_hook(hook, prepend=False)¶
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward
hooks on thistorch.nn.modules.Module
. Note that globalbackward
hooks registered withregister_module_full_backward_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_pre_hook(hook, prepend=False)¶
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature:
hook(module, grad_output) -> tuple[Tensor] or None
The
grad_output
is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place ofgrad_output
in subsequent computations. Entries ingrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Note that globalbackward_pre
hooks registered withregister_module_full_backward_pre_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_post_hook(hook)¶
Register a post hook to be run after module’s
load_state_dict
is called.- It should have the following signature::
hook(module, incompatible_keys) -> None
The
module
argument is the current module that this hook is registered on, and theincompatible_keys
argument is aNamedTuple
consisting of attributesmissing_keys
andunexpected_keys
.missing_keys
is alist
ofstr
containing the missing keys andunexpected_keys
is alist
ofstr
containing the unexpected keys.The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling
load_state_dict()
withstrict=True
are affected by modifications the hook makes tomissing_keys
orunexpected_keys
, as expected. Additions to either set of keys will result in an error being thrown whenstrict=True
, and clearing out both missing and unexpected keys will avoid an error.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_module(name, module)¶
Alias for
add_module()
.- Return type:
- register_parameter(name, param)¶
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters:
name (str) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- Return type:
- register_state_dict_pre_hook(hook)¶
Register a pre-hook for the
state_dict()
method.These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
. The registered hooks can be used to perform pre-processing before thestate_dict
call is made.
- requires_grad_(requires_grad=True)¶
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters:
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.- Returns:
self
- Return type:
Module
- save_model_init_file()[source]¶
Save model initialization file.
Initialization file is stored in the model directory under the name model_init_file.pkl.
Initialization file contains a dictionary model_init_attributes that includes:
‘model_init_args’ - Model initialization parameters
‘model_data_scalers’ - Model fitted data scalers
- save_model_init_state()[source]¶
Save model initial state to file.
Model state file is stored in model_directory under the name < model_name >-init.pt.
- save_model_state(epoch=None, is_best_state=False, is_remove_posterior=True)[source]¶
Save model state to file.
Model state file is stored in model_directory under the name < model_name >.pt or < model_name >-< epoch >.pt if epoch is known.
Model state file corresponding to the best performance is stored in model_directory under the name < model_name >-best.pt or < model_name >-< epoch >-best.pt if epoch is known.
- Parameters:
epoch (int, default=None) – Training epoch corresponding to current model state.
is_best_state (bool, default=False) – If True, save model state file corresponding to the best performance instead of regular state file.
is_remove_posterior (bool, default=True) – Remove model and optimizer state files corresponding to training epochs posterior to the saved state file. Effective only if saved training epoch is known.
- set_data_scalers(scaler_node_in, scaler_edge_in, scaler_global_in, scaler_node_out, scaler_edge_out, scaler_global_out)[source]¶
Set fitted model data scalers.
- Parameters:
scaler_node_in ({TorchMinMaxScaler, TorchMinMaxScaler}) – Data scaler for input node features.
scaler_edge_in ({TorchMinMaxScaler, TorchMinMaxScaler}) – Data scaler for input edge features.
scaler_global_in ({TorchMinMaxScaler, TorchMinMaxScaler}) – Data scaler for input global features.
scaler_node_out ({TorchMinMaxScaler, TorchMinMaxScaler}) – Data scaler for output node features.
scaler_edge_out ({TorchMinMaxScaler, TorchMinMaxScaler}) – Data scaler for output edge features.
scaler_global_out ({TorchMinMaxScaler, TorchMinMaxScaler}) – Data scaler for output global features.
- set_device(device_type)[source]¶
Set device on which torch.Tensor is allocated.
- Parameters:
device_type ({'cpu', 'cuda'}) – Type of device on which torch.Tensor is allocated.
device (torch.device) – Device on which torch.Tensor is allocated.
- set_extra_state(state)¶
Set extra state contained in the loaded state_dict.
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.
See
torch.Tensor.share_memory_()
.- Return type:
TypeVar
(T
, bound= Module)
- state_dict(*args, destination=None, prefix='', keep_vars=False)¶
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.Note
The returned object is a shallow copy. It contains references to the module’s parameters and buffers.
Warning
Currently
state_dict()
also accepts positional arguments fordestination
,prefix
andkeep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases.Warning
Please avoid the use of argument
destination
as it is not designed for end-users.- Parameters:
destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an
OrderedDict
will be created and returned. Default:None
.prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default:
''
.keep_vars (bool, optional) – by default the
Tensor
s returned in the state dict are detached from autograd. If it’s set toTrue
, detaching will not be performed. Default:False
.
- Returns:
a dictionary containing a whole state of the module
- Return type:
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- to(*args, **kwargs)¶
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device, recurse=True)¶
Move the parameters and buffers to the specified device without copying storage.
- Parameters:
device (
torch.device
) – The desired device of the parameters and buffers in this module.recurse (bool) – Whether parameters and buffers of submodules should be recursively moved to the specified device.
- Returns:
self
- Return type:
Module
- train(mode=True)¶
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters:
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns:
self
- Return type:
Module
- type(dst_type)¶
Casts all parameters and buffers to
dst_type
.Note
This method modifies the module in-place.
- Parameters:
dst_type (type or string) – the desired type
- Returns:
self
- Return type:
Module
- xpu(device=None)¶
Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module