graphorge.gnn_base_model.predict.prediction

Prediction of Graph Neural Network model.

Functions

predict

Make predictions with Graph Neural Network model for given dataset.

make_predictions_subdir

Create model predictions subdirectory.

save_sample_predictions

Save model prediction results for given sample.

load_sample_predictions

Load model prediction results for given sample.

compute_sample_prediction_loss

Compute loss of sample output features prediction.

seed_worker

Set workers seed in PyTorch data loaders to preserve reproducibility.

write_prediction_summary_file

Write summary data file for model prediction process.

Functions

compute_sample_prediction_loss(model, ...[, ...])

Compute loss of sample output features prediction.

get_pytorch_loss(loss_type, **kwargs)

Get PyTorch loss function.

load_sample_predictions(sample_prediction_path)

Load model prediction results for given sample.

make_directory(directory[, is_overwrite])

Create a directory.

make_predictions_subdir(predict_directory)

Create model predictions subdirectory.

predict(dataset, model_directory[, model, ...])

Make predictions with Graph Neural Network model for given dataset.

save_sample_predictions(predictions_dir, ...)

Save model prediction results for given sample.

seed_worker(worker_id)

Set workers seed in PyTorch data loaders to preserve reproducibility.

write_prediction_summary_file(...)

Write summary data file for model prediction process.

write_summary_file(summary_directory[, ...])

Write summary data file with provided keyword-based parameters.

Classes

GNNEPDBaseModel(n_node_in, n_node_out, ...)

GNN Encoder-Processor-Decoder base model.