hookeai.miscellaneous.pruning.pruning_dataset

Pruning procedure of time series data set.

Functions

prune_time_series_dataset

Prune time series data set.

setup_pruning_dirs

Setup main pruning process directories.

set_pruning_iter_dir

Setup pruning iteration directory.

set_default_pruning_parameters

Set default pruning parameters.

get_n_prun_sample

Get number of pruned samples.

perform_pruning_step

Perform pruning step.

set_pruning_step_dir

Setup pruning iteration directory.

write_summary_file

Write summary file.

load_full_dataset

Load full data set.

read_samples_loss_from_dir

Read loss samples from prediction directory.

plot_pruning_iterative_data

Plot pruning iterative data.

display_pruning_data

Display data from pruning data file.

preview_pruning_iterations

Preview pruning iterations.

Functions

display_pruning_data(pruning_data_file_path)

Display data from pruning data file.

find_unique_file_with_regex(directory, regex)

Find file in directory based on regular expression.

get_n_prun_sample(prun_scheduler_type, ...)

Get number of pruned samples.

get_parent_dataset_indices(subset, ...)

Get parent data set indices from subset indices.

load_dataset(dataset_file_path)

Load PyTorch time series data set.

load_full_dataset(full_dataset_dir)

Load full data set.

make_directory(directory[, is_overwrite])

Create a directory.

perform_model_prediction(predict_directory, ...)

Perform prediction with RNN-based model.

perform_model_standard_training(...[, ...])

Perform standard training of RNN-based model.

perform_pruning_step(prun_datasets_dir, ...)

Perform pruning step.

plot_pruning_iterative_data(pruning_dir, ...)

Plot pruning iterative data.

plot_xy_data(data_xy[, data_labels, ...])

Plot data in xy axes.

preview_pruning_iterations(pruning_dir[, ...])

Preview pruning iterations.

prune_time_series_dataset(pruning_dir, ...)

Prune time series data set.

read_mean_metrics_results_file(file_path[, ...])

Read mean prediction metrics from file.

read_samples_loss_from_dir(predictions_dir)

Read loss samples from prediction directory.

save_dataset(dataset, dataset_basename, ...)

Save PyTorch time series data set to file.

save_figure(figure, filename[, height, ...])

Save Matplotlib figure.

set_default_pruning_parameters()

Set default pruning parameters.

set_pruning_iter_dir(prun_datasets_dir, ...)

Setup pruning iteration directory.

set_pruning_step_dir(prun_datasets_dir, ...)

Setup pruning iteration directory.

setup_pruning_dirs(pruning_dir, testing_types)

Setup main pruning process directories.

split_dataset(dataset, split_sizes[, ...])

Randomly split data set into non-overlapping subsets.

write_summary_file(pruning_dir, pruning_params)

Write summary file.

Classes

TimeSeriesDatasetInMemory(dataset_samples)

Time series data set (in-memory storage only).