hookeai.miscellaneous.pruning.pruning_dataset.prune_time_series_dataset¶
- prune_time_series_dataset(pruning_dir, testing_types, pruning_params=None, is_remove_pruning_models=False, device_type='cpu', is_verbose=False)[source]¶
Prune time series data set.
- Parameters:
pruning_dir (str) – Pruning main directory.
testing_types (tuple[str]) – Types of testing data sets used to assess the performance of the model trained on the pruned training data sets. Available testing types include: ‘in_distribution’, ‘out_distribution’ and ‘unused_data’.
pruning_params (dict, default=None) – Pruning parameters. If None, then a default set of pruning parameters is adopted.
is_remove_pruning_models (bool, default=False) – If True, then remove pruning iteration models when pruning iteration is complete.
device_type ({'cpu', 'cuda'}, default='cpu') – Type of device on which torch.Tensor is allocated.
is_verbose (bool, default=False) – If True, enable verbose output.
- Returns:
pruning_params (dict) – Pruning parameters.
pruning_iterative_data (dict) – Pruning iterative data (item, dict) for each pruning iteration (key, str).