hookeai.model_architectures.procedures.convergence_plots

Plots for convergence analysis based on RNN-based models.

Functions

plot_prediction_loss_convergence

Plot average prediction loss against training data set size.

plot_best_parameters_convergence

Plot best state parameters versus training data set size.

plot_time_series_convergence

Plot time series predictions versus ground-truth.

plot_prediction_loss_convergence_uq

Plot average prediction loss versus training data set size.

plot_best_parameters_convergence_uq

Plot best state parameters versus training data set size.

plot_time_series_convergence_uq

Plot time series predictions versus ground-truth.

Functions

build_prediction_data_arrays(...[, samples_ids])

Build samples predictions data arrays with predictions and ground-truth.

build_time_series_predictions_data(...[, ...])

Build times series prediction and ground-truth data arrays.

find_unique_file_with_regex(directory, regex)

Find file in directory based on regular expression.

load_dataset(dataset_file_path)

Load PyTorch time series data set.

make_directory(directory[, is_overwrite])

Create a directory.

plot_best_parameters_convergence(...[, ...])

Plot best state parameters versus training data set size.

plot_best_parameters_convergence_uq(...[, ...])

Plot best state parameters versus training data set size.

plot_boxplots(data_boxplots[, data_labels, ...])

Plot set of box plots.

plot_prediction_loss_convergence(...[, ...])

Plot average prediction loss versus training data set size.

plot_prediction_loss_convergence_uq(...[, ...])

Plot average prediction loss versus training data set size.

plot_time_series_convergence(...[, ...])

Plot time series predictions versus ground-truth.

plot_time_series_convergence_uq(...[, ...])

Plot time series predictions versus ground-truth.

plot_time_series_prediction(prediction_sets)

Plot time series predictions.

plot_truth_vs_prediction(prediction_sets[, ...])

Plot ground-truth versus predictions.

read_best_parameters_from_file(...)

Read best performance state model parameters from file.

save_figure(figure, filename[, height, ...])

Save Matplotlib figure.

scatter_xy_data(data_xy[, data_labels, ...])

Scatter data in xy axes.