hookeai.model_architectures.procedures.model_data_scaling

Procedures associated to model data scalers and scaling operations.

Functions

init_data_scalers

Initialize model data scalers.

set_data_scalers

Set fitted model data scalers.

set_fitted_data_scalers

Set fitted model data scalers from given scaler type and parameters.

fit_data_scalers

Fit model data scalers.

data_scaler_transform

Perform data scaling operation on features PyTorch tensor.

load_model_data_scalers_from_file

Load data scalers from model initialization file.

check_normalized_return

Check if model data normalization is available.

Functions

check_normalized_return(model)

Check if model data normalization is available.

data_scaler_transform(model, tensor, ...[, mode])

Perform data scaling operation on features PyTorch tensor.

fit_data_scaler_from_dataset(dataset, ...[, ...])

Fit features type data scaler from given data set.

fit_data_scalers(model, dataset[, ...])

Fit model data scalers.

get_fitted_data_scaler(model, features_type)

Get fitted model data scalers.

init_data_scalers(model)

Initialize model data scalers.

load_model_data_scalers_from_file(model)

Load data scalers from model initialization file.

set_data_scalers(model, scaler_features_in, ...)

Set fitted model data scalers.

set_fitted_data_scalers(model, scaling_type, ...)

Set fitted model data scalers from given scaler type and parameters.

Classes

TorchMinMaxScaler(n_features[, minimum, ...])

PyTorch tensor min-max data scaler.

TorchStandardScaler(n_features[, mean, std, ...])

PyTorch tensor standardization data scaler.