cratepy.ioput.miscoutputfiles.voxelsoutput.MaterialQuantitiesComputer¶
- class MaterialQuantitiesComputer[source]¶
Bases:
object
Computation of quantities based on material state variables.
Material-related quantities computations are always performed assuming the three-dimensional strain and/or stress state.
- _fodevprojsym_mf¶
Fourth-order deviatoric projection tensor (second order symmetric tensors) (matricial form).
- Type:
numpy.ndarray (2d)
Constructor.
List of Public Methods
Compute von Mises equivalent strain.
Compute von Mises equivalent stress.
Methods
- get_vm_strain(strain_mf)[source]¶
Compute von Mises equivalent strain.
\[\varepsilon_{\text{VM}} = \frac{2}{3} || \boldsymbol{\varepsilon_{d}} ||\]where \(\varepsilon_{\text{VM}}\) is the von Mises equivalent strain and \(\boldsymbol{\varepsilon_{d}}\) is either the deviatoric infinitesimal strain tensor (infinitesimal strains) or the spatial logarithmic strain tensor (finite strains).
- Parameters:
strain_mf (numpy.ndarray (1d)) – Strain tensor (matricial form): infinitesimal strain tensor (infinitesimal strains) or spatial logarithmic strain tensor (finite strains).
- get_vm_stress(stress_mf)[source]¶
Compute von Mises equivalent stress.
\[\sigma_{\text{VM}} = \frac{3}{2} || \boldsymbol{\sigma_{d}} ||\]where \(\sigma_{\text{VM}}\) is the von Mises equivalent stress and \(\boldsymbol{\sigma_{d}}\) is the deviatoric Cauchy stress tensor.
- Parameters:
stress_mf (numpy.ndarray (1d)) – Cauchy stress tensor (matricial form).