cratepy.material.materialoperations.conjugate_material_log_strain¶
- conjugate_material_log_strain(def_gradient, first_piola_stress)[source]¶
Stress conjugate of material logarithmic strain tensor.
Material logarithmic strain tensor:
\[\boldsymbol{E} = \frac{1}{2} \ln (\boldsymbol{F}^{T} \boldsymbol{F})\]where \(\boldsymbol{E}\) is the material logarithmic strain tensor and \(\boldsymbol{F}\) is the deformation gradient.
Stress conjugate of material logarithmic strain tensor:
\[\boldsymbol{T} = \boldsymbol{R}^{T} \boldsymbol{P} \boldsymbol{F}^{T} \boldsymbol{R}\]where \(\boldsymbol{T}\) is the stress conjugate of the material logarithmic strain tensor, \(\boldsymbol{R}\) is the rotation tensor, \(\boldsymbol{P}\) is the first Piola-Kirchhoff stress tensor, and \(\boldsymbol{F}\) is the deformation gradient.
- Parameters:
def_gradient (numpy.ndarray (2d)) – Deformation gradient.
first_piola_stress (numpy.ndarray (2d)) – First Piola-Kirchhoff stress tensor.
- Returns:
material_log_strain (numpy.ndarray (2d)) – Material logarithmic strain.
stress_conjugate (numpy.ndarray (2d)) – Stress conjugate to material logarithmic strain.