Source code for cratepy.ioput.incoutputfiles.homresoutput

"""Output file: Homogenized strain/stress results.

This module includes the class associated with the output file where the
homogenized strain/stress results are stored.

Classes
-------
HomResOutput
    Output file: Homogenized strain/stress results.
"""
#
#                                                                       Modules
# =============================================================================
# Standard
import copy
# Third-party
import numpy as np
# Local
import tensor.matrixoperations as mop
import tensor.tensoroperations as top
from ioput.incoutputfiles.interface import IncrementalOutputFile
from material.materialoperations import compute_spatial_log_strain, \
                                        cauchy_from_first_piola, \
                                        MaterialQuantitiesComputer
#
#                                                          Authorship & Credits
# =============================================================================
__author__ = 'Bernardo Ferreira (bernardo_ferreira@brown.edu)'
__credits__ = ['Bernardo Ferreira', ]
__status__ = 'Stable'
# =============================================================================
#
# =============================================================================
[docs]class HomResOutput(IncrementalOutputFile): """Output file: Homogenized strain/stress results. Attributes ---------- _file_path : str Output file path. _header : list[str] List containing the header of each column (str). _col_width : int Output file column width. Methods ------- init_file(self, strain_formulation) Open output file and write file header. write_file(self, strain_formulation, problem_type, mac_load_path, \ hom_results, effective_time) Write output file. """
[docs] def __init__(self, file_path): """Constructor. Parameters ---------- file_path : str Output file path. """ self._file_path = file_path # Set output file header self._header = ['Increment', 'RunEffectTime', 'LoadSubpath', 'LoadFactor', 'Time', 'SubincLevel', 'strain_11', 'strain_21', 'strain_31', 'strain_12', 'strain_22', 'strain_32', 'strain_13', 'strain_23', 'strain_33', 'stress_11', 'stress_21', 'stress_31', 'stress_12', 'stress_22', 'stress_32', 'stress_13', 'stress_23', 'stress_33', 'vm_strain', 'vm_stress'] # Set column width self._col_width = max(16, max([len(x) for x in self._header]) + 2)
# -------------------------------------------------------------------------
[docs] def init_file(self, strain_formulation): """Open output file and write file header. Parameters ---------- strain_formulation: {'infinitesimal', 'finite'} Problem strain formulation. """ # Set loading initial output load_init = (0, 0.0, 0, 0.0, 0.0, 0) # Set strain and stress initial output strain_init = 9*[0.0, ] stress_init = 9*[0.0, ] if strain_formulation == 'finite': strain_init[0] = 1.0 strain_init[4] = 1.0 strain_init[8] = 1.0 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Open output file (write mode) output_file = open(self._file_path, 'w') # Set output file header format structure write_list = [ '{:>9s}'.format(self._header[0]) + ''.join([('{:>' + str(self._col_width) + 's}').format(x) for x in self._header[1:]]), '\n' + '{:>9d}'.format(load_init[0]) + ('{:>' + str(self._col_width) + '.8e}').format(load_init[1]) + ('{:>' + str(self._col_width) + 'd}').format(load_init[2]) + ''.join([('{:>' + str(self._col_width) + '.8e}').format(x) for x in load_init[3:5]]) + ('{:>' + str(self._col_width) + 'd}').format(load_init[5]) + ''.join([('{:>' + str(self._col_width) + '.8e}').format(x) for x in strain_init]) + ''.join([('{:>' + str(self._col_width) + '.8e}').format(x) for x in stress_init]) + ''.join([('{:>' + str(self._col_width) + '.8e}').format(0.0) for x in range(2)])] # Write output file header output_file.writelines(write_list) # Close output file output_file.close()
# -------------------------------------------------------------------------
[docs] def write_file(self, strain_formulation, problem_type, mac_load_path, hom_results, effective_time): """Write output file. Parameters ---------- strain_formulation: {'infinitesimal', 'finite'} Problem strain formulation. problem_type : int Problem type: 2D plane strain (1), 2D plane stress (2), 2D axisymmetric (3) and 3D (4). mac_load_path : LoadingPath Macroscale loading path. hom_results : dict Homogenized strain/stress results stored as: * 'strain' : homogenized strain tensor (numpy.ndarray (2d)) * 'stress' : homogenized stress tensor (numpy.ndarray (2d)) * 'hom_stress_33' : homogenized out-of-plain stress (float) Infinitesimal strain tensor and Cauchy stress tensor (infinitesimal strains) or Deformation gradient and first Piola-Kirchhoff stress tensor (finite strains). effective_time : float Current time (s) associated with the solution of the equilibrium problem. """ # Get loading path data sp_id, sp_inc, sp_total_lfact, _, sp_total_time, _, subinc_level = \ mac_load_path.get_subpath_state() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get homogenized strain/stress data hom_strain = hom_results['hom_strain'] hom_stress = hom_results['hom_stress'] if problem_type == 1: hom_stress_33 = hom_results['hom_stress_33'] # When the problem type corresponds to a 2D analysis, build the 3D # homogenized strain and stress tensors by considering the appropriate # out-of-plane strain and stress components out_hom_strain = np.zeros((3, 3)) out_hom_stress = np.zeros((3, 3)) if problem_type == 1: out_hom_strain[0:2, 0:2] = hom_strain if strain_formulation == 'finite': out_hom_strain[2, 2] = 1.0 out_hom_stress[0:2, 0:2] = hom_stress out_hom_stress[2, 2] = hom_stress_33 else: out_hom_strain[:, :] = hom_strain out_hom_stress[:, :] = hom_stress # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get 3D problem parameters n_dim, comp_order_sym, _ = \ mop.get_problem_type_parameters(problem_type=4) # Get fourth-order tensors _, _, _, _, _, _, fodevprojsym = top.get_id_operators(n_dim) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Instantiate material state computations csbvar_computer = MaterialQuantitiesComputer() # Compute spatial logarithmic strain tensor and Cauchy stress tensor if strain_formulation == 'infinitesimal': strain = copy.deepcopy(out_hom_strain) cauchy_stress = copy.deepcopy(out_hom_stress) else: # Compute spatial logarithmic strain tensor strain = compute_spatial_log_strain(out_hom_strain) # Get Cauchy stress tensor from first Piola-Kirchhoff stress tensor cauchy_stress = cauchy_from_first_piola(out_hom_strain, out_hom_stress) # Get spatial logarithmic strain tensor (matricial form) strain_mf = mop.get_tensor_mf(strain, n_dim, comp_order_sym) # Get Cauchy stress tensor (matricial form) cauchy_stress_mf = mop.get_tensor_mf(cauchy_stress, n_dim, comp_order_sym) # Compute von Mises equivalent strain vm_strain = csbvar_computer.get_vm_strain(strain_mf) # Compute von Mises equivalent stress vm_stress = csbvar_computer.get_vm_stress(cauchy_stress_mf) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Open homogenized results output file (append mode) output_file = open(self._file_path, 'a') # Set increment homogenized results format structure inc_data = [sp_inc, effective_time, sp_id, sp_total_lfact, sp_total_time, subinc_level, out_hom_strain[0, 0], out_hom_strain[1, 0], out_hom_strain[2, 0], out_hom_strain[0, 1], out_hom_strain[1, 1], out_hom_strain[2, 1], out_hom_strain[0, 2], out_hom_strain[1, 2], out_hom_strain[2, 2], out_hom_stress[0, 0], out_hom_stress[1, 0], out_hom_stress[2, 0], out_hom_stress[0, 1], out_hom_stress[1, 1], out_hom_stress[2, 1], out_hom_stress[0, 2], out_hom_stress[1, 2], out_hom_stress[2, 2], vm_strain, vm_stress] write_list = \ ['\n' + ('{:>9d}').format(inc_data[0]) + ('{:>' + str(self._col_width) + '.8e}').format(inc_data[1]) + ('{:>' + str(self._col_width) + 'd}').format(inc_data[2]) + ''.join([('{:>' + str(self._col_width) + '.8e}').format(x) for x in inc_data[3:5]]) + ('{:>' + str(self._col_width) + 'd}').format(inc_data[5]) + ''.join([('{:>' + str(self._col_width) + '.8e}').format(x) for x in inc_data[6:]])] # Write increment homogenized results output_file.writelines(write_list) # Close output file output_file.close()