"""Loading path enforcement and incrementation.
This module includes several classes that control the general loading
incrementation flow, namely two classes that allow the enforcement of a
general non-mononotic loading path (composed of mononotic loading subpaths)
and two classes that allow rewinding the solution to a past loading increment.
Classes
-------
LoadingPath
Loading incrementation flow.
LoadingSubpath
Loading subpath.
IncrementRewinder
Rewind analysis to rewind state increment (initial instant).
RewindManager
Manage analysis rewind operations and evaluate analysis rewind criteria.
"""
#
# Modules
# =============================================================================
# Standard
import copy
import time
# Third-party
import numpy as np
import anytree.walker
# Local
import ioput.info as info
import ioput.ioutilities as ioutil
import tensor.matrixoperations as mop
#
# Authorship & Credits
# =============================================================================
__author__ = 'Bernardo Ferreira (bernardo_ferreira@brown.edu)'
__credits__ = ['Bernardo Ferreira', ]
__status__ = 'Stable'
# =============================================================================
#
# =============================================================================
#
# Loading path and subpath
# =============================================================================
[docs]class LoadingPath:
"""Loading incrementation flow.
This class contains a collection of loading subpaths, the current loading
state and a set of methods to control the loading incrementation flow.
Attributes
----------
_n_dim : int
Problem number of spatial dimensions.
_comp_order_sym : list[str]
Strain/Stress components symmetric order.
_comp_order_nsym : list[str]
Strain/Stress components nonsymmetric order.
_n_load_subpaths : int
Number of loading subpaths.
_load_subpaths : list
List of LoadingSubpath.
_conv_hom_state : dict
Converged homogenized state (item, numpy.ndarray of shape (n_comps,))
for key in {'strain', 'stress'}.
_is_last_inc : bool
Loading last increment flag.
_n_cinc_cuts : int
Consecutive loading increment cuts counter.
_increm_state : dict
Increment state: key `inc` contains the current increment number (int),
key `subpath_id` contains the current loading subpath index (int).
Methods
-------
new_load_increment(self)
Setup new loading increment and get associated data.
increment_cut(self, n_dim, comp_order)
Perform loading increment cut and setup new increment.
update_hom_state(self, hom_strain_mf, hom_stress_mf)
Update converged homogenized state.
get_subpath_state(self)
Get current loading subpath state.
get_increm_state(self)
Get incremental state.
_new_subpath(self)
Add a new loading subpath to the loading path.
_get_load_subpath(self)
Get current loading subpath.
_update_inc(self)
Update loading increment counters.
_get_applied_mac_load(self)
Compute current applied loading.
_get_inc_mac_load(self)
Compute current incremental loading.
_remove_sym(self, comp_order_sym, comp_order_nsym)
Remove the symmetric components of loading related objects.
_get_load_mf(n_dim, comp_order, load_vector)
Get matricial form of load tensor given in vector form.
"""
[docs] def __init__(self, strain_formulation, problem_type, mac_load,
mac_load_presctype, mac_load_increm, max_subinc_level=5,
max_cinc_cuts=5):
"""Constructor.
Parameters
----------
strain_formulation: {'infinitesimal', 'finite'}
Problem strain formulation.
problem_type : int
Problem type: 2D plane strain (1), 2D plane stress (2),
2D axisymmetric (3) and 3D (4).
mac_load : dict
For each loading nature type (key, {'strain', 'stress'}), stores
the loading constraints for each loading subpath in a
numpy.ndarray (2d), where the i-th row is associated with the i-th
strain/stress component and the j-th column is associated with the
j-th loading subpath.
mac_load_presctype : numpy.ndarray (2d)
Loading nature type ({'strain', 'stress'}) associated with each
loading constraint (numpy.ndarrayndarray of shape
(n_comps, n_load_subpaths)), where the i-th row is associated with
the i-th strain/stress component and the j-th column is associated
with the j-th loading subpath.
mac_load_increm : dict
For each loading subpath id (key, str), stores a numpy.ndarray of
shape (n_load_increments, 2) where each row is associated with a
prescribed loading increment, and the columns 0 and 1 contain the
corresponding incremental load factor and incremental time,
respectively.
max_subinc_level : int, default=5
Maximum level of loading subincrementation.
max_cinc_cuts : int, default=5
Maximum number of consecutive load increment cuts.
"""
self._strain_formulation = strain_formulation
self._problem_type = problem_type
self._mac_load = mac_load
self._mac_load_presctype = mac_load_presctype
self._mac_load_increm = mac_load_increm
self._max_subinc_level = max_subinc_level
self._max_cinc_cuts = max_cinc_cuts
# Get problem type parameters
n_dim, comp_order_sym, comp_order_nsym = \
mop.get_problem_type_parameters(problem_type)
self._n_dim = n_dim
self._comp_order_sym = comp_order_sym
self._comp_order_nsym = comp_order_nsym
# Remove symmetric components under an infinitesimal strain formulation
if strain_formulation == 'infinitesimal':
self._remove_sym(comp_order_sym, comp_order_nsym)
# Set total number of loading subpaths
self._n_load_subpaths = len(mac_load_increm.keys())
# Initialize list of loading subpaths
self._load_subpaths = []
# Initialize increment state
self._increm_state = {'inc': 0, 'subpath_id': -1}
# Initialize converged homogenized state
self._conv_hom_state = {key: None for key in ['strain', 'stress']}
# Initialize loading last increment flag
self._is_last_inc = False
# Initialize consecutive increment cuts counter
self._n_cinc_cuts = 0
# -------------------------------------------------------------------------
[docs] def new_load_increment(self):
"""Setup new loading increment and get associated data.
Returns
-------
applied_mac_load_mf : dict
For each prescribed loading nature type
(key, {'strain', 'stress'}), stores the current applied loading
constraints in a numpy.ndarray of shape (n_comps,).
inc_mac_load_mf : dict
For each loading nature type (key, {'strain', 'stress'}), stores
the incremental loading constraint matricial form in a
numpy.ndarray of shape (n_comps,).
n_presc_strain : int
Number of prescribed loading strain components.
presc_strain_idxs : list[int]
Prescribed loading strain components indexes.
n_presc_stress : int
Number of prescribed loading stress components.
presc_stress_idxs : list[int]
Prescribed loading stress components indexes.
is_last_inc : bool
Loading last increment flag.
"""
# Set strain/stress components order according to problem strain
# formulation
if self._strain_formulation == 'infinitesimal':
comp_order = self._comp_order_sym
elif self._strain_formulation == 'finite':
comp_order = self._comp_order_nsym
else:
raise RuntimeError('Unknown problem strain formulation.')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Reset consecutive loading increment cuts counter
self._n_cinc_cuts = 0
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Add a new loading subpath to the loading path if either first load
# increment or current loading subpath is completed
if self._increm_state['inc'] == 0 \
or self._get_load_subpath()._is_last_subpath_inc:
# Add a new loading subpath
self._new_subpath()
# Get current loading subpath
load_subpath = self._get_load_subpath()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Update loading increment
self._update_inc()
# Check if last loading increment
if load_subpath._id == self._n_load_subpaths - 1 and \
load_subpath._is_last_subpath_inc:
self._is_last_inc = True
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Compute current applied loading
applied_mac_load = self._get_applied_mac_load()
applied_mac_load_mf = {}
for ltype in applied_mac_load.keys():
applied_mac_load_mf[ltype] = type(self)._get_load_mf(
self._n_dim, comp_order, applied_mac_load[ltype])
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Compute current incremental loading
inc_mac_load = self._get_inc_mac_load()
inc_mac_load_mf = {}
for ltype in inc_mac_load.keys():
inc_mac_load_mf[ltype] = type(self)._get_load_mf(
self._n_dim, comp_order, inc_mac_load[ltype])
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Return
return applied_mac_load_mf, inc_mac_load_mf, \
load_subpath._n_presc_strain, load_subpath._presc_strain_idxs, \
load_subpath._n_presc_stress, load_subpath._presc_stress_idxs, \
self._is_last_inc
# -------------------------------------------------------------------------
[docs] def increment_cut(self, n_dim, comp_order):
"""Perform loading increment cut and setup new increment.
Parameters
----------
n_dim : int
Problem dimension.
comp_order : list[str]
Strain/Stress components (str) order.
Returns
-------
applied_mac_load_mf : dict
For each prescribed loading nature type
(key, {'strain', 'stress'}), stores the current applied loading
constraints in a numpy.ndarray of shape (n_comps,).
inc_mac_load_mf : dict
For each loading nature type (key, {'strain', 'stress'}), stores
the incremental loading constraint matricial form in a
numpy.ndarray of shape (n_comps,).
n_presc_strain : int
Number of prescribed macroscale loading strain components.
presc_strain_idxs : list[int]
Prescribed macroscale loading strain components indexes.
n_presc_stress : int
Number of prescribed macroscale loading stress components.
presc_stress_idxs : list[int]
Prescribed macroscale loading stress components indexes.
is_last_inc : bool
Loading last increment flag.
"""
# Get display features
indent = ioutil.setdisplayfeatures()[2]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Get current loading subpath
load_subpath = self._get_load_subpath()
# Perform loading increment
load_subpath.increment_cut()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Set last macroscale loading increment flag
self._is_last_inc = False
# Increment (+1) consecutive loading increment cuts counter
self._n_cinc_cuts += 1
# Check if maximum number of consecutive loading increment cuts is
# surpassed
if self._n_cinc_cuts > self._max_cinc_cuts:
summary = 'Maximum number of consecutive loading increment cuts'
description = 'Maximum number of macroscale loading consecutive ' \
+ 'increment cuts ({}) has been reached' + '\n' \
+ indent + 'without solution convergence.'
info.displayinfo('4', summary, description, self._max_cinc_cuts)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Compute current applied loading
applied_mac_load = self._get_applied_mac_load()
applied_mac_load_mf = {}
for ltype in applied_mac_load.keys():
applied_mac_load_mf[ltype] = type(self)._get_load_mf(
self._n_dim, comp_order, applied_mac_load[ltype])
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Compute incremental loading
inc_mac_load = self._get_inc_mac_load()
inc_mac_load_mf = {}
for ltype in inc_mac_load.keys():
inc_mac_load_mf[ltype] = type(self)._get_load_mf(
n_dim, comp_order, inc_mac_load[ltype])
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
return applied_mac_load_mf, inc_mac_load_mf, \
load_subpath._n_presc_strain, load_subpath._presc_strain_idxs, \
load_subpath._n_presc_stress, load_subpath._presc_stress_idxs, \
self._is_last_inc
# -------------------------------------------------------------------------
[docs] def update_hom_state(self, hom_strain_mf, hom_stress_mf):
"""Update converged homogenized state.
Parameters
----------
hom_strain_mf : numpy.ndarray (1d)
Homogenized strain tensor stored in matricial form.
hom_stress_mf : numpy.ndarray (1d)
Homogenized stress tensor stored in matricial form.
"""
# Set strain/stress components order according to problem strain
# formulation
if self._strain_formulation == 'infinitesimal':
comp_order = self._comp_order_sym
elif self._strain_formulation == 'finite':
comp_order = self._comp_order_nsym
else:
raise RuntimeError('Unknown problem strain formulation.')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Build homogenized strain tensor
hom_strain = mop.get_tensor_from_mf(hom_strain_mf, self._n_dim,
comp_order)
# Build homogenized stress tensor
hom_stress = mop.get_tensor_from_mf(hom_stress_mf, self._n_dim,
comp_order)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initialize converged homogenized strain and stress tensors vector
# form
self._conv_hom_state['strain'] = np.zeros(len(comp_order))
self._conv_hom_state['stress'] = np.zeros(len(comp_order))
# Loop over strain/stress components
for k in range(len(comp_order)):
# Get strain/stress component
comp = comp_order[k]
# Get component indexes
i = int(comp[0]) - 1
j = int(comp[1]) - 1
# Build converged homogenized strain and stress tensors vector form
self._conv_hom_state['strain'][k] = hom_strain[i, j]
self._conv_hom_state['stress'][k] = hom_stress[i, j]
# -------------------------------------------------------------------------
[docs] def get_subpath_state(self):
"""Get current loading subpath state.
Returns
-------
id : int
Loading subpath id.
inc : int
Current loading subpath increment counter.
total_lfact : float
Current loading subpath current total load factor.
inc_lfact : float
Current loading subpath current incremental load factor.
total_time : float
Current loading subpath current total time.
inc_time : float
Current loading subpath current incremental time.
sub_inc_level : int
Current loading subpath current subincrementation level.
"""
# Get current loading subpath
load_subpath = self._get_load_subpath()
# Return loading subpath state
return load_subpath.get_state()
# -------------------------------------------------------------------------
[docs] def get_increm_state(self):
"""Get incremental state.
Returns
-------
increm_state : dict
Increment state: key `inc` contains the current increment number,
key `subpath_id` contains the current loading subpath index.
"""
return copy.deepcopy(self._increm_state)
# -------------------------------------------------------------------------
[docs] def _new_subpath(self):
"""Add a new loading subpath to the loading path."""
# Increment (+1) loading subpath id
self._increm_state['subpath_id'] += 1
subpath_id = self._increm_state['subpath_id']
# Get load and prescription types of the current loading subpath
presctype = self._mac_load_presctype[:, subpath_id]
load = {key: np.zeros(self._mac_load[key].shape[0])
for key in self._mac_load.keys() if key in presctype}
for ltype in load.keys():
load[ltype] = self._mac_load[ltype][:, 1 + subpath_id]
# Get loading subpath incremental load factors and incremental times
inc_lfacts = list(self._mac_load_increm[str(subpath_id)][:, 0])
inc_times = list(self._mac_load_increm[str(subpath_id)][:, 1])
# Add a new loading subpath
self._load_subpaths.append(
LoadingSubpath(subpath_id, self._strain_formulation,
self._problem_type, self._conv_hom_state,
load, presctype, inc_lfacts, inc_times,
self._max_subinc_level))
# -------------------------------------------------------------------------
[docs] def _get_load_subpath(self):
"""Get current loading subpath.
Returns
-------
load_subpath : LoadingSubpath
Current loading subpath.
"""
return self._load_subpaths[self._increm_state['subpath_id']]
# -------------------------------------------------------------------------
[docs] def _update_inc(self):
"""Update loading increment counters."""
# Increment (+1) global increment counter
self._increm_state['inc'] += 1
# Increment (+1) loading subpath increment counter
self._get_load_subpath().update_inc()
# -------------------------------------------------------------------------
[docs] def _get_applied_mac_load(self):
"""Compute current applied loading.
Returns
-------
applied_mac_load : dict
For each prescribed loading nature type
(key, {'strain', 'stress'}), stores the current applied loading
constraints in a numpy.ndarray of shape (n_comps,).
"""
# Get current applied loading
applied_mac_load = self._get_load_subpath().get_applied_load()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
return applied_mac_load
# -------------------------------------------------------------------------
[docs] def _get_inc_mac_load(self):
"""Compute current incremental loading.
Returns
-------
inc_mac_load : dict
For each loading nature type (key, {'strain', 'stress'}), stores
the incremental loading constraint in a numpy.ndarray of shape
(n_comps,).
"""
# Get current incremental loading
inc_mac_load = self._get_load_subpath().get_inc_applied_load()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
return inc_mac_load
# -------------------------------------------------------------------------
[docs] def _remove_sym(self, comp_order_sym, comp_order_nsym):
"""Remove the symmetric components of loading related objects.
Under an infinitesimal strain formulation, remove the symmetric
strain/stress components of loading related objects. In addition, the
remaining independent components are sorted according to the problem
strain/stress symmetric component order.
----
Parameters
----------
comp_order_sym : list[str]
Symmetric strain/stress components (str) order.
comp_order_nsym : list[str]
Nonsymmetric strain/stress components (str) order.
"""
# Copy loading objects
mac_load_cp = copy.deepcopy(self._mac_load)
mac_load_presctype_cp = copy.deepcopy(self._mac_load_presctype)
# Loop over symmetric components indexes
for i in range(len(comp_order_sym)):
# Get non-symmetric component index
j = comp_order_nsym.index(comp_order_sym[i])
# Assemble symmetric components
for ltype in self._mac_load.keys():
if ltype in self._mac_load_presctype:
self._mac_load[ltype][i, :] = mac_load_cp[ltype][j, :]
self._mac_load_presctype[i, :] = mac_load_presctype_cp[j, :]
# Remove (non-symmetric) additional components
n_sym = len(comp_order_sym)
for ltype in self._mac_load.keys():
if ltype in self._mac_load_presctype:
self._mac_load[ltype] = self._mac_load[ltype][0:n_sym, :]
self._mac_load_presctype = self._mac_load_presctype[:n_sym, :]
# -------------------------------------------------------------------------
[docs] @staticmethod
def _get_load_mf(n_dim, comp_order, load_vector):
"""Get matricial form of load tensor given in vector form.
Parameters
----------
comp_order : list[str]
Strain/Stress components (str) order.
load_vector : numpy.ndarray (1d)
Loading tensor in vector form (numpy.ndarray of shape (n_comps,)).
Returns
-------
load_mf : numpy.ndarray (1d)
Loading tensor matricial form (numpy.ndarray of shape (n_comps,)).
"""
# Initialize incremental macroscale load tensor
load_matrix = np.zeros((n_dim, n_dim))
# Build incremental macroscale load tensor
for j in range(n_dim):
for i in range(0, j + 1):
load_matrix[i, j] = \
load_vector[comp_order.index(str(i + 1) + str(j + 1))]
if i != j:
if n_dim**2 == len(comp_order):
load_matrix[j, i] = load_vector[
comp_order.index(str(j + 1) + str(i + 1))]
else:
load_matrix[j, i] = load_matrix[i, j]
# Set incremental macroscopic load matricial form
load_mf = mop.get_tensor_mf(load_matrix, n_dim, comp_order)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
return load_mf
# =============================================================================
[docs]class LoadingSubpath:
"""Loading subpath.
Attributes
----------
_n_dim : int
Problem number of spatial dimensions.
_comp_order_sym : list[str]
Strain/Stress components symmetric order.
_comp_order_nsym : list[str]
Strain/Stress components nonsymmetric order.
_inc : int
Loading subpath increment counter.
_total_lfact : float
Loading subpath total load factor.
_total_time : float
Loading subpath total time.
_n_presc_strain : int
Number of prescribed loading strain components.
_n_presc_stress : int
Number of prescribed loading stress components.
_presc_strain_idxs : list[int]
Prescribed loading strain components indexes.
_presc_stress_idxs : list[int]
Prescribed loading stress components indexes.
_applied_load : dict
For each prescribed loading nature type (key, {'strain', 'stress'}),
stores the current applied loading constraints in a numpy.ndarray of
shape (n_comps,).
_inc_applied_load : dict
For each prescribed loading nature type (key, {'strain', 'stress'}),
stores the current incremental applied loading constraints in a
numpy.ndarray of shape (n_comps,).
_is_last_subpath_inc : bool
Loading subpath last increment flag.
_sub_inc_levels : list
History of subincrementation levels.
Methods
-------
get_state(self)
Get loading subpath state data.
update_inc(self)
Update increment counter, total load factor and applied loading.
increment_cut(self)
Perform loading increment cut.
get_applied_load(self)
Get current applied loading.
get_inc_applied_load(self)
Get current incremental applied loading.
_update_inc_applied_load(self)
Update current incremental applied loading.
"""
[docs] def __init__(self, id, strain_formulation, problem_type,
init_conv_hom_state, load, presctype, inc_lfacts, inc_times,
max_subinc_level):
"""Constructor.
Parameters
----------
id : int
Loading subpath id.
strain_formulation: {'infinitesimal', 'finite'}
Problem strain formulation.
problem_type : int
Problem type: 2D plane strain (1), 2D plane stress (2),
2D axisymmetric (3) and 3D (4).
init_conv_hom_state : dict
Converged homogenized state (item, numpy.ndarray of shape
(n_comps,)) for key in {'strain', 'stress'} at the beginning of
loading subpath.
load : dict
For each prescribed loading nature type
(key, {'strain', 'stress'}), stores the loading constraints in a
numpy.ndarray of shape (n_comps,).
presctype : numpy.ndarray (1d)
Loading nature type ({'strain', 'stress'}) associated with
each macroscale loading constraint (numpy.ndarray of shape
(n_comps,)).
inc_lfacts : numpy.ndarray (1d)
Loading subpath incremental load factors (numpy.ndarray of shape
(n_increments,)).
inc_times : numpy.ndarray (1d)
Loading subpath incremental times (numpy.ndarray of shape
(n_increments,)).
max_subinc_level : int
Maximum level of loading subincrementation.
"""
self._id = id
self._strain_formulation = strain_formulation
self._problem_type = problem_type
self._init_conv_hom_state = copy.deepcopy(init_conv_hom_state)
self._load = copy.deepcopy(load)
self._presctype = copy.deepcopy(presctype)
self._inc_lfacts = copy.deepcopy(inc_lfacts)
self._inc_times = copy.deepcopy(inc_times)
self._max_subinc_level = max_subinc_level
# Get problem type parameters
n_dim, comp_order_sym, comp_order_nsym = \
mop.get_problem_type_parameters(problem_type)
self._n_dim = n_dim
self._comp_order_sym = comp_order_sym
self._comp_order_nsym = comp_order_nsym
# Initialize loading subpath increment counter
self._inc = 0
# Initialize loading subpath total load factor
self._total_lfact = 0
# Initialize loading subpath total time
self._total_time = 0
# Set number of prescribed loading strain and stress components and
# associated indexes
self._n_presc_strain = sum([x == 'strain' for x in self._presctype])
self._n_presc_stress = sum([x == 'stress' for x in self._presctype])
self._presc_strain_idxs = []
self._presc_stress_idxs = []
for i in range(len(presctype)):
if presctype[i] == 'strain':
self._presc_strain_idxs.append(i)
else:
self._presc_stress_idxs.append(i)
# Initialize current applied and incremental applied loading
self._applied_load = {key: np.zeros(load[key].shape[0])
for key in load.keys()}
self._inc_applied_load = {key: np.zeros(load[key].shape[0])
for key in load.keys()}
# Initialize loading subpath last increment flag
self._is_last_subpath_inc = False
# Initialize subincrementation levels
self._sub_inc_levels = [0]*len(self._inc_lfacts)
# -------------------------------------------------------------------------
[docs] def get_state(self):
"""Get loading subpath state data.
Returns
-------
id : int
Loading subpath id.
inc : int
Loading subpath increment counter.
total_lfact : float
Loading subpath current total load factor.
inc_lfact : float
Loading subpath current incremental load factor.
total_time : float
Loading subpath current total time.
inc_time : float
Loading subpath current incremental time.
sub_inc_level : int
Loading subpath current subincrementation level.
"""
# Get loading subpath current increment index
inc_idx = self._inc - 1
# Return
return self._id, self._inc, self._total_lfact, \
self._inc_lfacts[inc_idx], self._total_time, \
self._inc_times[inc_idx], self._sub_inc_levels[inc_idx]
# -------------------------------------------------------------------------
[docs] def update_inc(self):
"""Update increment counter, total load factor and applied loading."""
# Increment (+1) loading subpath increment counter
self._inc += 1
# Get loading subpath current increment index
inc_idx = self._inc - 1
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Procedure related with the loading subincrementation: upon
# convergence of a given increment, guarantee that the following
# increment magnitude is at most one (subincrementation) level above.
# The increment cut procedure is performed the required number of times
# in order to ensure this progressive recovery towards the prescribed
# incrementation
if self._inc > 1:
while self._sub_inc_levels[inc_idx - 1] \
- self._sub_inc_levels[inc_idx] >= 2:
self.increment_cut()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Update total load factor
self._total_lfact = sum(self._inc_lfacts[0:self._inc])
# Update total time
self._total_time = sum(self._inc_times[0:self._inc])
# Update current incremental applied loading
self._update_inc_applied_load()
# Check if last increment
if self._inc == len(self._inc_lfacts):
self._is_last_subpath_inc = True
# -------------------------------------------------------------------------
[docs] def increment_cut(self):
"""Perform loading increment cut."""
# Get display features
indent = ioutil.setdisplayfeatures()[2]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Get loading subpath current increment index
inc_idx = self._inc - 1
# Update subincrementation level
self._sub_inc_levels[inc_idx] += 1
self._sub_inc_levels.insert(inc_idx + 1, self._sub_inc_levels[inc_idx])
# Check if maximum subincrementation level is surpassed
if self._sub_inc_levels[inc_idx] > self._max_subinc_level:
summary = 'Maximum loading subincrementation level'
description = 'The maximum macroscale loading subincrementation ' \
+ 'level ({}) has been reached without' + '\n' \
+ indent + 'solution convergence.'
info.displayinfo('4', summary, description, self._max_subinc_level)
# Get current incremental load factor and associated incremental time
inc_lfact = self._inc_lfacts[inc_idx]
inc_time = self._inc_times[inc_idx]
# Cut load increment in half
self._inc_lfacts[inc_idx] = inc_lfact/2.0
self._inc_lfacts.insert(inc_idx + 1, self._inc_lfacts[inc_idx])
self._inc_times[inc_idx] = inc_time/2.0
self._inc_times.insert(inc_idx + 1, self._inc_times[inc_idx])
# Update total load factor and total time
self._total_lfact = sum(self._inc_lfacts[0:self._inc])
self._total_time = sum(self._inc_times[0:self._inc])
# Update current incremental applied loading
self._update_inc_applied_load()
# Set loading subpath last increment flag
self._is_last_subpath_inc = False
# -------------------------------------------------------------------------
[docs] def get_applied_load(self):
"""Get current applied loading.
Returns
-------
applied_load : dict
For each prescribed loading nature type
(key, {'strain', 'stress'}), stores the current applied loading
constraints in a numpy.ndarray of shape (n_comps,).
"""
return copy.deepcopy(self._applied_load)
# -------------------------------------------------------------------------
[docs] def get_inc_applied_load(self):
"""Get current incremental applied loading.
Returns
-------
inc_applied_load : dict
For each prescribed loading nature type
(key, {'strain', 'stress'}), stores the current incremental applied
loading constraints in a numpy.ndarray of shape (n_comps,).
"""
return copy.deepcopy(self._inc_applied_load)
# -------------------------------------------------------------------------
[docs] def _update_inc_applied_load(self):
"""Update current incremental applied loading.
*Infinitesimal strains:*
.. math::
\\boldsymbol{\\varepsilon}_{n+1} =
\\boldsymbol{\\varepsilon}_{0} + \\lambda_{n+1}
(\\boldsymbol{\\varepsilon}^{\\text{total}} -
\\boldsymbol{\\varepsilon}_{0})
.. math::
\\Delta \\boldsymbol{\\varepsilon}_{n+1} =
\\Delta \\lambda_{n+1} (\\boldsymbol{\\varepsilon}^{
\\text{total}} - \\boldsymbol{\\varepsilon}_{0})
where :math:`\\boldsymbol{\\varepsilon}_{n+1}` is the current
applied infinitesimal strain tensor, :math:`\\lambda_{n+1}` is the
current load factor,
:math:`\\boldsymbol{\\varepsilon}^{\\text{total}}` is the total
infinitesimal strain tensor prescribed in the mononotic loading
path, :math:`\\boldsymbol{\\varepsilon}_{0}` is the infinitesimal
strain tensor at the beginning of the mononotic loading path,
:math:`\\Delta \\boldsymbol{\\varepsilon}_{n+1}` is the
incremental infinitesimal strain tensor,
:math:`\\Delta \\lambda_{n+1}` is the incremental load factor, and
:math:`n+1` denotes the current increment.
.. math::
\\boldsymbol{\\sigma}_{n+1} = \\boldsymbol{\\sigma}_{0} +
\\lambda_{n+1} (\\boldsymbol{\\sigma}^{\\text{total}} -
\\boldsymbol{\\sigma}_{0})
.. math::
\\Delta \\boldsymbol{\\sigma}_{n+1} = \\Delta \\lambda_{n+1}
(\\boldsymbol{\\sigma}^{\\text{total}} -
\\boldsymbol{\\sigma}_{0})
where :math:`\\boldsymbol{\\sigma}_{n+1}` is the current applied
Cauchy stress tensor, :math:`\\lambda_{n+1}` is the current load
factor, :math:`\\boldsymbol{\\sigma}^{\\text{total}}` is the total
Cauchy stress tensor prescribed in the mononotic loading path,
:math:`\\boldsymbol{\\sigma}_{0}` is the Cauchy stress tensor at
the beginning of the mononotic loading path,
:math:`\\Delta \\boldsymbol{\\sigma}_{n+1}` is the incremental
Cauchy stress tensor, :math:`\\Delta \\lambda_{n+1}` is the
incremental load factor, and :math:`n+1` denotes the current
increment.
----
*Finite strains:*
.. math::
\\boldsymbol{F}_{n+1} = \\exp (\\lambda_{n+1} \\ln (
\\boldsymbol{F}^{\\text{total}} \\boldsymbol{F}_{0}^{-1}))
\\boldsymbol{F}_{0}
.. math::
\\boldsymbol{F}_{\\Delta, n+1} = \\exp (\\Delta \\lambda_{n+1}
\\ln ( \\boldsymbol{F}^{\\text{total}}
\\boldsymbol{F}_{0}^{-1}))
where :math:`\\boldsymbol{F}_{n+1}` is the current applied
deformation gradient, :math:`\\lambda_{n+1}` is the current load
factor, :math:`\\boldsymbol{F}_{\\text{total}}` is the total
deformation gradient prescribed in the mononotic loading path, and
:math:`\\boldsymbol{F}_{0}` is the deformation gradient
at the beginning of the mononotic loading path,
:math:`\\boldsymbol{F}_{\\Delta, n+1}` is the incremental
deformation gradient, :math:`\\Delta \\lambda_{n+1}` is the
incremental load factor, and :math:`n+1` denotes the current
increment.
.. math::
\\boldsymbol{P}_{n+1} = \\boldsymbol{P}_{0} + \\lambda_{n+1}
(\\boldsymbol{P}^{\\text{total}} - \\boldsymbol{P}_{0})
.. math::
\\Delta \\boldsymbol{P}_{n+1} = \\Delta \\lambda_{n+1}
(\\boldsymbol{P}^{\\text{total}} - \\boldsymbol{P}_{0})
where :math:`\\boldsymbol{P}_{n+1}` is the current applied first
Piola-Kirchhoff stress tensor, :math:`\\lambda_{n+1}` is the
current load factor, :math:`\\boldsymbol{P}^{\\text{total}}` is the
total first Piola-Kirchhoff stress tensor prescribed in the
mononotic loading path, :math:`\\boldsymbol{P}_{0}` is the first
Piola-Kirchhoff stress tensor at the beginning of the mononotic
loading path, :math:`\\Delta \\boldsymbol{P}_{n+1}` is the
incremental first Piola-Kirchhoff stress tensor,
:math:`\\Delta \\lambda_{n+1}` is the incremental load factor, and
:math:`n+1` denotes the current increment.
**Remark**: It is not straightforward how to perform a
component-wise multiplicative decomposition of the deformation
gradient in the case of a mixed strain-stress loading prescription.
"""
# Get loading subpath current increment index
inc_idx = self._inc - 1
# Get current incremental load factor and associated incremental time
inc_lfact = self._inc_lfacts[inc_idx]
# Evaluate prescription type
is_strain_only = 'stress' not in self._inc_applied_load.keys()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Update current incremental applied loading
if self._strain_formulation == 'finite' and is_strain_only:
# Initialize initial and total deformation gradient
def_gradient_init = np.zeros((self._n_dim, self._n_dim))
def_gradient_total = np.zeros((self._n_dim, self._n_dim))
# Build initial and total deformation gradient
for i in range(len(self._comp_order_nsym)):
# Get component second-order index
so_idx = tuple([int(x) - 1
for x in list(self._comp_order_nsym[i])])
# Build initial and total deformation gradient
def_gradient_init[so_idx] = \
self._init_conv_hom_state['strain'][i]
def_gradient_total[so_idx] = self._load['strain'][i]
# Compute total incremental deformation gradient (multiplicative
# decomposition)
inc_def_gradient_total = np.matmul(
def_gradient_total, np.linalg.inv(def_gradient_init))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Compute incremental deformation gradient relative to initial
# deformation gradient (multiplicative decomposition)
inc_init_def_gradient = mop.matrix_root(inc_def_gradient_total,
self._total_lfact)
# Compute current applied deformation gradient
applied_def_gradient = np.matmul(inc_init_def_gradient,
def_gradient_init)
# Store current applied deformation gradient components
for i in range(len(self._comp_order_nsym)):
# Get component second-order index
so_idx = tuple([int(x) - 1
for x in list(self._comp_order_nsym[i])])
# Store current applied deformation gradient component
self._applied_load['strain'][i] = applied_def_gradient[so_idx]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Compute current incremental deformation gradient (multiplicative
# decomposition)
inc_def_gradient = mop.matrix_root(inc_def_gradient_total,
inc_lfact)
# Store current incremental deformation gradient components
for i in range(len(self._comp_order_nsym)):
# Get component second-order index
so_idx = tuple([int(x) - 1
for x in list(self._comp_order_nsym[i])])
# Store incremental deformation gradient component
self._inc_applied_load['strain'][i] = inc_def_gradient[so_idx]
else:
# Loop over prescription types
for ltype in self._inc_applied_load.keys():
# Loop over loading components
for i in range(len(self._inc_applied_load[ltype])):
# Compute current applied and incremental loading component
# (additive decomposition)
if self._presctype[i] == ltype:
# Compute current applied loading component
self._applied_load[ltype][i] = \
self._init_conv_hom_state[ltype][i] \
+ self._total_lfact*(
self._load[ltype][i]
- self._init_conv_hom_state[ltype][i])
# Compute current incremental loading component
self._inc_applied_load[ltype][i] = \
inc_lfact*(self._load[ltype][i]
- self._init_conv_hom_state[ltype][i])
#
# Loading path rewinder
# =============================================================================
[docs]class IncrementRewinder:
"""Rewind analysis to rewind state increment (initial instant).
Attributes
----------
_rewind_inc : int
Increment associated with the rewind state.
_loading_path : LoadingPath
Loading path instance rewind state.
_material_state : MaterialState
CRVE material constitutive state at rewind state.
_clusters_sct_mf : dict
Fourth-order strain concentration tensor (matricial form)
(item, numpy.ndarray (2d)) associated with each material cluster
(key, str).
_ref_material : ElasticReferenceMaterial
Elastic reference material at rewind state.
_global_strain_mf : numpy.ndarray (1d)
Global vector of clusters strain tensors (matricial form).
_farfield_strain_mf : numpy.ndarray (1d)
Far-field strain tensor (matricial form).
Methods
-------
get_rewind_inc(self)
Get increment associated with the rewind state.
save_loading_path(self, loading_path)
Save loading path rewind state.
get_loading_path(self)
Get loading path at rewind state.
save_material_state(self, material_state)
Save material constitutive state at rewind state.
save_asca_algorithmic_variables(self, global_strain_mf, \
farfield_strain_mf)
Save ASCA algorithmic variables at rewind state.
get_asca_algorithmic_variables(self)
Get ASCA algorithmic variables at rewind state.
rewind_output_files(self, hres_output=None, efftan_output=None, \
ref_mat_output=None, voxels_output=None, \
adapt_output=None, vtk_output=None)
"""
[docs] def __init__(self, rewind_inc, phase_clusters):
"""Increment rewinder constructor.
Parameters
----------
rewind_inc : int
Increment associated with the rewind state.
phase_clusters : dict
Clusters labels (item, list[int]) associated with each material
phase (key, str).
"""
self._rewind_inc = rewind_inc
self._phase_clusters = copy.deepcopy(phase_clusters)
# Initialize loading path at rewind state
self._loading_path = None
# Initialize material constitutive state at rewind state
self._material_state = None
# Initialize elastic reference material at rewind state
self._ref_material = None
# Initialize clusters strain concentration tensors at rewind state
self._clusters_sct_mf = None
# Initialize ASCA algorithmic variables
self._global_strain_mf = None
self._farfield_strain_mf = None
# -------------------------------------------------------------------------
[docs] def get_rewind_inc(self):
"""Get increment associated with the rewind state.
Returns
-------
rewind_inc : int
Increment associated with the rewind state.
"""
return self._rewind_inc
# -------------------------------------------------------------------------
[docs] def save_loading_path(self, loading_path):
"""Save loading path rewind state.
Parameters
----------
loading_path : LoadingPath
LoadingPath instance.
"""
self._loading_path = copy.deepcopy(loading_path)
# -------------------------------------------------------------------------
[docs] def get_loading_path(self):
"""Get loading path at rewind state.
Returns
-------
loading_path : LoadingPath
Loading path instance rewind state.
"""
return copy.deepcopy(self._loading_path)
# -------------------------------------------------------------------------
[docs] def save_material_state(self, material_state):
"""Save material constitutive state at rewind state.
Parameters
----------
material_state : MaterialState
CRVE material constitutive state at rewind state.
"""
self._material_state = copy.deepcopy(material_state)
# -------------------------------------------------------------------------
[docs] def get_material_state(self, crve):
"""Get material constitutive state at rewind state.
Parameters
----------
crve : CRVE
Cluster-Reduced Representative Volume Element.
Returns
-------
material_state : MaterialState
CRVE material constitutive state at rewind state.
"""
# If the current CRVE clustering is coincident with the CRVE clustering
# at the rewind state, simply return the material constitutive state
# stored at rewind state. Otherwise, perform a suitable transfer of
# state variables between the rewind state CRVE clustering and the
# current CRVE clustering
if self._phase_clusters == crve.get_cluster_phases():
# Return material constitutive state stored at rewind state
return copy.deepcopy(self._material_state)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
else:
# Get clusters state variables at rewind state
clusters_state_rew = self._material_state.get_clusters_state()
# Get clusters deformation gradient at rewind state
clusters_def_gradient_rew_mf = \
self._material_state.get_clusters_def_gradient_mf()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initialize clusters state variables
clusters_state = {}
# Initialize clusters deformation gradient
clusters_def_gradient_mf = {}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Get material phases
material_phases = crve.get_material_phases()
# Get cluster-reduced material phases
cluster_phases = crve.get_cluster_phases()
# Get clusters associated with each material phase
phase_clusters = crve.get_phase_clusters()
# Get clusters volume fraction
clusters_vf = crve.get_clusters_vf()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Loop over material phases
for mat_phase in material_phases:
# Get cluster-reduced material phase
crmp = cluster_phases[mat_phase]
# Get clustering type
clustering_type = crmp.get_clustering_type()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Proceed according to clustering type
if clustering_type == 'static':
# Loop over material phase clusters
for cluster in phase_clusters[mat_phase]:
# Set cluster state variables
clusters_state[str(cluster)] = \
copy.deepcopy(clusters_state_rew[str(cluster)])
# Set cluster deformation gradient
clusters_def_gradient_mf[str(cluster)] = copy.deepcopy(
clusters_def_gradient_rew_mf[str(cluster)])
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
elif clustering_type == 'adaptive':
# Get cluster-reduced material phase clustering tree nodes
clustering_tree_nodes, root_cluster_node = \
crmp.get_clustering_tree_nodes()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Get rewind state cluster nodes
rewind_clusters_nodes = []
for cluster in self._phase_clusters[mat_phase]:
rewind_clusters_nodes.append(
clustering_tree_nodes[str(cluster)])
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initialize node walker
node_walker = anytree.walker.Walker()
# Loop over material phase clusters
for cluster in phase_clusters[mat_phase]:
# Get cluster node
cluster_node = clustering_tree_nodes[str(cluster)]
# Build walk from cluster node up to the root node
node_walk_to_root = node_walker.walk(cluster_node,
root_cluster_node)
# Loop over walk nodes
for node in node_walk_to_root[0]:
# Find hierarchicaly closest rewind state cluster
# node
if node in rewind_clusters_nodes:
# Get node cluster
parent_cluster = int(node.name)
# Set cluster state variables
clusters_state[str(cluster)] = copy.deepcopy(
clusters_state_rew[str(parent_cluster)])
# Set cluster deformation gradient
clusters_def_gradient_mf[str(cluster)] = \
copy.deepcopy(clusters_def_gradient_rew_mf[
str(parent_cluster)])
# Skip to the following cluster
break
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
else:
raise RuntimeError('Unknown material phase clustering '
'type.')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Set material constitutive state at rewind state according to the
# current clustering
self._material_state.set_rewind_state_updated_clustering(
phase_clusters, clusters_vf, clusters_state,
clusters_def_gradient_mf)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Return material constitutive state stored at rewind state
# according to the update clustering
return copy.deepcopy(self._material_state)
# -------------------------------------------------------------------------
[docs] def save_reference_material(self, ref_material):
"""Save elastic reference material at rewind state.
Parameters
----------
ref_material : ElasticReferenceMaterial
Elastic reference material at rewind state.
"""
# Save elastic reference material
self._ref_material = copy.deepcopy(ref_material)
# -------------------------------------------------------------------------
[docs] def get_reference_material(self):
"""Get elastic reference material at rewind state.
Returns
-------
ref_material : ElasticReferenceMaterial
Elastic reference material at rewind state.
"""
return copy.deepcopy(self._ref_material)
# -------------------------------------------------------------------------
[docs] def save_clusters_sct(self, clusters_sct_mf):
"""Save clusters strain concentration tensors at rewind state.
Parameters
----------
clusters_sct_mf : dict
Fourth-order strain concentration tensor (matricial form)
(item, numpy.ndarray (2d)) associated with each material cluster
(key, str).
"""
# Save clusters state variables
self._clusters_sct_mf = copy.deepcopy(clusters_sct_mf)
# -------------------------------------------------------------------------
[docs] def get_clusters_sct(self):
"""Get clusters strain concentration tensors at rewind state.
Returns
-------
clusters_sct_mf : dict
Fourth-order strain concentration tensor (matricial form)
(item, numpy.ndarray (2d)) associated with each material cluster
(key, str).
"""
# Save clusters state variables
return copy.deepcopy(self._clusters_sct_mf)
# -------------------------------------------------------------------------
[docs] def save_asca_algorithmic_variables(self, global_strain_mf,
farfield_strain_mf):
"""Save ASCA algorithmic variables at rewind state.
Parameters
----------
global_strain_mf : numpy.ndarray (1d)
Global vector of clusters strain tensors (matricial form).
farfield_strain_mf : numpy.ndarray (1d), default=None
Far-field strain tensor (matricial form).
"""
# Save global vector of clusters strain tensors
self._global_strain_mf = copy.deepcopy(global_strain_mf)
# Save far-field strain tensor
self._farfield_strain_mf = farfield_strain_mf
# -------------------------------------------------------------------------
[docs] def get_asca_algorithmic_variables(self):
"""Get ASCA algorithmic variables at rewind state.
Returns
-------
global_strain_mf : numpy.ndarray (1d)
Global vector of clusters strain tensors (matricial form).
farfield_strain_mf : numpy.ndarray (1d), default=None
Far-field strain tensor (matricial form).
"""
return copy.deepcopy(self._global_strain_mf), \
copy.deepcopy(self._farfield_strain_mf)
# -------------------------------------------------------------------------
[docs] def rewind_output_files(self, hres_output=None, efftan_output=None,
ref_mat_output=None, voxels_output=None,
adapt_output=None, vtk_output=None):
"""Rewind output files to the rewind state.
Parameters
----------
hres_output : HomResOutput
Output associated with the homogenized results.
efftan_output : EffTanOutput
Output associated with the CRVE effective tangent modulus.
ref_mat_output : RefMatOutput
Output associated with the reference material.
voxels_output : VoxelsOutput
Output associated with voxels material-related quantities.
adapt_output : ClusteringAdaptivityOutput
Output associated with the clustering adaptivity procedures.
vtk_output : VTKOutput
Output associated with the VTK files.
"""
# Rewind output files
if hres_output is not None:
hres_output.rewind_file(self._rewind_inc)
if efftan_output is not None:
efftan_output.rewind_file(self._rewind_inc)
if ref_mat_output is not None:
ref_mat_output.rewind_file(self._rewind_inc)
if voxels_output is not None:
voxels_output.rewind_file(self._rewind_inc)
if adapt_output is not None:
adapt_output.rewind_file(self._rewind_inc)
if vtk_output is not None:
vtk_output.rewind_files(self._rewind_inc)
# =============================================================================
[docs]class RewindManager:
"""Manage analysis rewind operations and evaluate analysis rewind criteria.
Attributes
----------
_n_rewinds : int
Number of rewind operations.
_rewind_time : float
Total time spent in rewind operations and in deleted analysis
increments.
_init_time : float
Reference time.
Methods
-------
get_rewind_time(self)
Get total time of rewind operations and deleted analysis increments.
update_rewind_time(self, mode='init')
Update total rewind time.
is_rewind_available(self)
Evaluate if rewind operations are available.
is_save_rewind_state(self, inc)
Evaluate conditions to save rewind state.
is_rewinding_criteria(self, inc, material_phases, phase_clusters, \
clusters_state)
Check analysis rewinding criteria.
get_save_rewind_state_criteria()
Get available rewind state storage criteria and default parameters.
get_rewinding_criteria()
Get rewinding criteria and default parameters.
"""
[docs] def __init__(self, rewind_state_criterion, rewinding_criterion,
max_n_rewinds=1):
"""Analysis rewind manager constructor.
Parameters
----------
rewind_state_criterion : tuple
Rewind state storage criterion [0] and associated parameter [1].
rewinding_criterion : tuple
Rewinding criterion [0] and associated parameter [1].
max_n_rewinds : int, default=1
Maximum number of rewind operations.
"""
self._rewind_state_criterion = rewind_state_criterion
self._rewinding_criterion = rewinding_criterion
self._max_n_rewinds = max_n_rewinds
# Initialize number of rewind operations
self._n_rewinds = 0
# Initialize total rewind time
self._rewind_time = 0
# -------------------------------------------------------------------------
[docs] def get_rewind_time(self):
"""Get total time of rewind operations and deleted analysis increments.
Returns
-------
rewind_time : float
Total time of rewind operations and in deleted analysis increments.
"""
return self._rewind_time
# -------------------------------------------------------------------------
[docs] def update_rewind_time(self, mode='init'):
"""Update total rewind time.
Parameters
----------
mode : {'init', 'update'}, default='init'
"""
if mode == 'init':
# Set reference initial time
self._init_time = time.time()
elif mode == 'update':
# Update total rewind time
self._rewind_time += time.time() - self._init_time
# Set reference initial time
self._init_time = time.time()
else:
raise RuntimeError('Unknown mode.')
# -------------------------------------------------------------------------
[docs] def is_rewind_available(self):
"""Evaluate if rewind operations are available.
Returns
-------
is_available : bool
True if rewind operations are available, False otherwise.
"""
# Initialize rewind operations availability
is_available = True
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Evaluate maximum number of rewind operations
if self._n_rewinds >= self._max_n_rewinds:
is_available = False
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Return rewind operations availability
return is_available
# -------------------------------------------------------------------------
[docs] def is_save_rewind_state(self, inc):
"""Evaluate conditions to save rewind state.
Parameters
----------
inc : int
Macroscale loading increment.
Returns
-------
is_save_state : bool
True if conditions to save rewind state are satisfied, False
otherwise.
"""
# Initialize save rewind state flag
is_save_state = False
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Get rewind state criterion
criterion = self._rewind_state_criterion[0]
# Evaluate rewind state criterion
if criterion == 'increment_number':
# Evaluate increment number
if inc == self._rewind_state_criterion[1]:
is_save_state = True
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
else:
raise RuntimeError('Unknown rewind state criterion.')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Return save rewind state flag
return is_save_state
# -------------------------------------------------------------------------
[docs] def is_rewinding_criteria(self, inc, material_phases, phase_clusters,
clusters_state):
"""Check analysis rewinding criteria.
Parameters
----------
inc : int
Macroscale loading increment.
material_phases : list[str]
CRVE material phases labels (str).
phase_clusters : dict
Clusters labels (item, list[int]) associated with each material
phase (key, str).
clusters_state : dict
Material constitutive model state variables (item, dict) associated
with each material cluster (key, str).
Returns
-------
is_rewind : bool
True if analysis rewinding criteria are satisfied, False otherwise.
"""
# Initialize analysis rewind flag
is_rewind = False
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Get rewinding criterion
criterion = self._rewinding_criterion[0]
# Evaluate analysis rewinding criterion
if criterion == 'increment_number':
# Evaluate increment number
is_rewind = inc == self._rewinding_criterion[1]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
elif criterion == 'max_acc_p_strain':
# Evaluate accumulated plastic strain threshold
for mat_phase in material_phases:
# Loop over material phase clusters
for cluster in phase_clusters[mat_phase]:
# Get cluster state variables
state_variables = clusters_state[str(cluster)]
# Check if accumulated plastic strain is cluster state
# variable
if 'acc_p_strain' not in state_variables:
continue
# Evaluate accumulated plastic strain
if state_variables['acc_p_strain'] \
> self._rewinding_criterion[1]:
is_rewind = True
break
if is_rewind:
break
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
else:
raise RuntimeError('Unknown rewinding criterion.')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Increment number of rewind operations
if is_rewind:
self._n_rewinds += 1
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Return analysis rewinding flag
return is_rewind
# -------------------------------------------------------------------------
[docs] @staticmethod
def get_save_rewind_state_criteria():
"""Get available rewind state storage criteria and default parameters.
Returns
-------
available_save_rewind_state_criteria : dict
Available rewind state storage criteria (key, str) and associated
default parameters (item).
"""
# Set available rewind state storage criteria
available_save_rewind_state_criteria = {'increment_number': 0, }
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Return
return available_save_rewind_state_criteria
# -------------------------------------------------------------------------
[docs] @staticmethod
def get_rewinding_criteria():
"""Get rewinding criteria and default parameters.
Returns
-------
available_rewinding_criteria : dict
Available rewinding criteria (key, str) and associated default
parameters (item).
"""
# Set available rewinding criteria
available_rewinding_criteria = {'increment_number': 0,
'max_acc_p_strain': 1.0e-10}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Return
return available_rewinding_criteria