cratepy.clustering.adaptivity.crve_adaptivity.MaterialQuantitiesComputer

class MaterialQuantitiesComputer[source]

Bases: object

Computation of quantities based on material state variables.

Material-related quantities computations are always performed assuming the three-dimensional strain and/or stress state.

_n_dim

Problem dimension.

Type:

int

_comp_order_sym

Strain/Stress components symmetric order.

Type:

list[str]

_comp_order_nsym

Strain/Stress components nonsymmetric order.

Type:

list[str]

_fodevprojsym_mf

Fourth-order deviatoric projection tensor (second order symmetric tensors) (matricial form).

Type:

numpy.ndarray (2d)

get_vm_stress(self, stress_mf)[source]

Compute von Mises equivalent stress.

get_vm_strain(self, strain_mf)[source]

Compute von Mises equivalent strain.

Constructor.

List of Public Methods

get_vm_strain

Compute von Mises equivalent strain.

get_vm_stress

Compute von Mises equivalent stress.

Methods

__init__()[source]

Constructor.

get_vm_strain(strain_mf)[source]

Compute von Mises equivalent strain.

\[\varepsilon_{\text{VM}} = \frac{2}{3} || \boldsymbol{\varepsilon_{d}} ||\]

where \(\varepsilon_{\text{VM}}\) is the von Mises equivalent strain and \(\boldsymbol{\varepsilon_{d}}\) is either the deviatoric infinitesimal strain tensor (infinitesimal strains) or the spatial logarithmic strain tensor (finite strains).


Parameters:

strain_mf (numpy.ndarray (1d)) – Strain tensor (matricial form): infinitesimal strain tensor (infinitesimal strains) or spatial logarithmic strain tensor (finite strains).

get_vm_stress(stress_mf)[source]

Compute von Mises equivalent stress.

\[\sigma_{\text{VM}} = \frac{3}{2} || \boldsymbol{\sigma_{d}} ||\]

where \(\sigma_{\text{VM}}\) is the von Mises equivalent stress and \(\boldsymbol{\sigma_{d}}\) is the deviatoric Cauchy stress tensor.


Parameters:

stress_mf (numpy.ndarray (1d)) – Cauchy stress tensor (matricial form).