cratepy.clustering.clusteringdata.get_available_clustering_features¶
- get_available_clustering_features(strain_formulation, problem_type)[source]¶
Get available clustering features and corresponding descriptors.
Available clustering features identifiers:
Identifier: 1
Infinitesimal strains: Fourth-order local elastic strain concentration tensor based on the elastic infinitesimal strain tensor,
\[\boldsymbol{\varepsilon}_{\mu}^{e}(\boldsymbol{Y}) = \boldsymbol{\mathsf{H}}^{e}(\boldsymbol{Y}): \boldsymbol{\varepsilon}^{e} (\boldsymbol{X}) \, , \quad \forall \boldsymbol{Y} \in \Omega_{\mu,\,0} \, ,\]where \(\boldsymbol{\mathsf{H}}^{e}\) is the fourth-order local elastic strain concentration tensor, \(\boldsymbol{\varepsilon}_{\mu}^{e}\) is the microscale elastic infinitesimal strain tensor, \(\boldsymbol{\varepsilon}^{e}\) is the macroscale elastic infinitesimal strain tensor, \(\boldsymbol{Y}\) is a point of the microscale reference configuration (\(\Omega_{\mu,\,0}\)), and \(\boldsymbol{X}\) is a point of the macroscale reference configuration (\(\Omega_{0}\)).
Finite strains: Fourth-order local elastic strain concentration tensor based on the elastic material logarithmic strain tensor,
\[\boldsymbol{E}_{\mu}^{e}(\boldsymbol{Y}) = \boldsymbol{\mathsf{H}}^{e}(\boldsymbol{Y}): \boldsymbol{E}^{e} (\boldsymbol{X}) \, , \quad \forall \boldsymbol{Y} \in \Omega_{\mu,\,0} \, ,\]where \(\boldsymbol{\mathsf{H}}^{e}\) is the fourth-order local elastic strain concentration tensor, \(\boldsymbol{E}_{\mu}^{e}\) is the microscale elastic material logarithmic strain tensor, \(\boldsymbol{E}^{e}\) is the macroscale elastic material logarithmic strain tensor, \(\boldsymbol{Y}\) is a point of the microscale reference configuration (\(\Omega_{\mu,\,0}\)), and \(\boldsymbol{X}\) is a point of the macroscale reference configuration (\(\Omega_{0}\)).
Identifier: 2
Spatial coordinates first-order tensor in the reference configuration, \(\boldsymbol{Y}\).
- Parameters:
strain_formulation ({'infinitesimal', 'finite'}) – Problem strain formulation.
problem_type (int) – Problem type: 2D plane strain (1), 2D plane stress (2), 2D axisymmetric (3) and 3D (4).
n_dim (int) – Number of spatial dimensions.
comp_order_sym (list[str]) – Symmetric strain/stress components (str) order.
comp_order_nsym (list[str]) – Nonsymmetric strain/stress components (str) order.
- Returns:
features_descriptors – Data (tuple structured as (number of feature dimensions (int), feature computation algorithm (function), list of macroscale strain loadings (list[numpy.ndarray (2d)]), strain magnitude factor (float))) associated to each feature (key, str). The macroscale strain loading is the infinitesimal strain tensor (infinitesimal strains) or the deformation gradient (finite strains).
- Return type: