cratepy.tensor.tensoroperations.get_id_operators¶
- get_id_operators(n_dim)[source]¶
Set common second- and fourth-order identity operators.
- Parameters:
n_dim (int) – Number of dimensions.
- Returns:
soid (numpy.ndarray (2d)) – Second-order identity tensor:
\[I_{ij} = \delta_{ij}\]foid (numpy.ndarray (4d)) – Fourth-order identity tensor:
\[I_{ijkl} = \delta_{ik}\delta_{jl}\]fotransp (numpy.ndarray (4d)) – Fourth-order transposition tensor:
\[I_{ijkl} = \delta_{il}\delta_{jk}\]fosym (numpy.ndarray (4d)) – Fourth-order symmetric projection tensor:
\[I_{ij} = 0.5(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})\]fodiagtrace (numpy.ndarray (4d)) – Fourth-order ‘diagonal trace’ tensor:
\[I_{ijkl} = \delta_{ij}\delta_{kl}\]fodevproj (numpy.ndarray (4d)) – Fourth-order deviatoric projection tensor:
\[I_{ijkl} = \delta_{ik}\delta_{jl} - \dfrac{1}{3} \delta_{ij}\delta_{kl}\]fodevprojsym (numpy.ndarray (4d)) – Fourth-order deviatoric projection tensor (second-order symmetric tensors):
\[I_{ijkl} = 0.5(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) - \dfrac{1}{3} \delta_{ij}\delta_{kl}\]